(b)Reject H0

(c)Men think corruption is more justifiable than women.

(d)Reject H0

(e)Men think tax evasion is more justifiable than women.

Question

asked 2021-06-24

Refer to the Journal of Applied Psychology (Jan. 2011) study of the determinants of task performance. In addition to \(x_{1} =\) conscientiousness score and \(x_{2} = \{1 \text{if highly complex job, 0 if not}\}\), the researchers also used \(x_{3} =\) emotional stability score, \(x_{4} =\) organizational citizenship behavior score, and \(x_{5} =\) counterproductive work behavior score to model y = task performance score. One of their concerns is the level of multicollinearity in the data. A matrix of correlations for all possible pairs of independent variables follows. Based on this information, do you detect a moderate or high level of multicollinearity? If so, what are your recommendations?

\(x_{1}\ x_{2}\ x_{3}\ x_{4}\)

Conscientiousness \((x_{1})\)

Job Complexity \((x_{2}).\ 13\)

Emotional Stability \((x_{3}).\ 62.\ 14\)

Organizational Citizenship \((x_{4}).\ 24.\ 03.\ 24\)

Counterproductive Work \((x_{5})-\ .23-\ .23-\ .02-\ .62\)

asked 2021-06-13

1. Who seems to have more variability in their shoe sizes, men or women?

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

asked 2021-05-02

asked 2021-06-24