Question

How do you find percents of data and probabilities of events associated with normal distributions?

Equations
ANSWERED
asked 2021-06-04
How do you find percents of data and probabilities of events associated with normal distributions?

Answers (1)

2021-06-05
You can find percents of data and probabilities associated with a normal distribution by determining how many standard deviations the data. is from the mean, and then using the percentages for a normal distribution to find the percentage for the data or the probability.
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-28
Represent sampling distributions in the format of a table that lists the different values of the sample statistic along with their corresponding probabilities. Given that the data consist of ranks, does it really make sense to identify the sampling distribution of the sample means?
asked 2021-06-03
Find the discriminant of each equation and determine whether the equation has (1) two nonreal complex solutions, (2) one real solution with a multiplicity of 2, or (3) two real solutions. Do not solve the equations. \(7x^{2} - 2x - 14 = 0\)
asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-02-21
How do you solve this problem? I don' t even know whereto begin.
A Ferrari with a mass of 1400 kg approaches a freeway underpassthat is 10 m across. At what speed must the car be moving, inorder for it to have a wavelength such that it might somehow"diffract" after passing through this "single slit"? How dothese conditions compare to normal freeway speeds of 30m/s?
...