Question

(4/(k-1))-(1/(k+4))=0

Equations and inequalities
ANSWERED
asked 2021-06-07
\(\displaystyle{\left(\frac{{4}}{{{k}-{1}}}\right)}-{\left(\frac{{1}}{{{k}+{4}}}\right)}={0}\)

Answers (1)

2021-06-08
We are given: \(\displaystyle{\left(\frac{{4}}{{{k}-{1}}}\right)}-{\left(\frac{{1}}{{{k}+{4}}}\right)}={0}\)
Add \(\displaystyle\frac{{1}}{{{k}+{4}}}\) to both sides: \(\displaystyle{\left(\frac{{4}}{{{k}-{1}}}\right)}={\left(\frac{{1}}{{{k}+{4}}}\right)}\)
Cross multiply: 4(k+4)=1(k-1)
4k+16=k-1
Subtract 16 from both sides: 4k=k-17
Subtract k from both sides: 3k=-17
Divide both sides by 3: \(\displaystyle{k}=-{\left(\frac{{17}}{{3}}\right)}\)
0
 
Best answer

expert advice

Need a better answer?
...