Recall that \((f+g)(x)=f(x)+g(x)\) so:

\(\displaystyle{\left({f}+{g}\right)}{\left({x}\right)}={\left({x}+{4}\right)}+{\left({4}{x}^{{2}}\right)}\)

\(\displaystyle{\left({f}+{g}\right)}{\left({x}\right)}={4}{x}^{{2}}+{x}+{4}\)

Replacing x with 2 and evaluating, we can find \((f+g)(2)\); \(\displaystyle{\left({f}+{g}\right)}{\left({2}\right)}={4}{\left({2}\right)}^{{2}}+{4}\)

\((f+g)(2)=16+2+4\)

\((f+g)(2)=22\)