# Write a short paragraph explaining this statement. Use the following example and your answers Does the particle travel clockwise or anticlockwise around the circle? Find parametric equations if the particles moves in the opposite direction around the circle. The position of a particle is given by the parametric equations x = sin t, y = cos t where 1 represents time. We know that the shape of the path of the particle is a circle.

Question
Write a short paragraph explaining this statement. Use the following example and your answers Does the particle travel clockwise or anticlockwise around the circle? Find parametric equations if the particles moves in the opposite direction around the circle. The position of a particle is given by the parametric equations $$x = sin t, y = cos t$$ where 1 represents time. We know that the shape of the path of the particle is a circle.

2021-03-19
The particle travels clockwise. And if the particle travels in the opposite direction around the circle, the parametric equations are $$x= cos t, y= sin t$$. Calculation: The particle travels clockwise. For example at $$t = 0$$ the particle is at the point (0, 1), but at the time $$t = \frac{\pi}{2}$$ the particle has move to the point (1, 0) in a clockwise direction. The parametric equations when the particle travels in the opposite direction. The parametric equations will be exchanged that are, $$x = cos t, y = sin t$$. Conclusion: Hence, the particle travels clockwise. And if the particle travels in the opposite direction around the circle, the parametric equations are $$x= cos t, y = sin t$$.

### Relevant Questions

That parametric equations contain more information than just the shape of the curve. Write a short paragraph explaining this statement. Use the following example and your answers to parts (a) and (b) below in your explanation. The position of a particle is given by the parametric equations $$x =\ \sin\ (t)\ and\ y =\ \cos\ (t)$$ where t represents time. We know that the shape of the path of the particle is a circle. a) How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. b) Does the particle travel clockwise or counterclockwise around the circle? Find parametric equations if the particle moves in the opposite direction around the circle.
Write a short paragraph explaining this statement. Use the following example and your answers How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. The position of a particle is given by the parametric equations $$x = sin t, y = cos t$$ where 1 represents time. We know that the shape of the path of the particle is a circle.
1. A curve is given by the following parametric equations. x = 20 cost, y = 10 sint. The parametric equations are used to represent the location of a car going around the racetrack. a) What is the cartesian equation that represents the race track the car is traveling on? b) What parametric equations would we use to make the car go 3 times faster on the same track? c) What parametric equations would we use to make the car go half as fast on the same track? d) What parametric equations and restrictions on t would we use to make the car go clockwise (reverse direction) and only half-way around on an interval of [0, 2?]? e) Convert the cartesian equation you found in part “a” into a polar equation? Plug it into Desmos to check your work. You must solve for “r”, so “r = ?”
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
Determine the area of the region below the parametric curve given by the set of parametric equations. For each problem you may assume that each curve traces out exactly once from right to left for the given range of t. For these problems you should only use the given parametric equations to determine the answer. 1.$$x = t^2 + 5t - 1 y = 40 - t^2 -2 \leq t \leq 5$$ 2.$$x = 3cos^2 (t) — sin^2 (t) y = 6 + cos(t) -\frac{\pi}{2} \neq t \leq 0$$ 3.$$x = e^{\frac{1}{4} t} —2 y = 4 + e^{\frac{1}{4 t}} — e^{\frac{1}{4} t} - 6 \leq t \leq 1$$
Assume that a ball of charged particles has a uniformly distributednegative charge density except for a narrow radial tunnel throughits center, from the surface on one side to the surface on the opposite side. Also assume that we can position a proton any where along the tunnel or outside the ball. Let $$\displaystyle{F}_{{R}}$$ be the magnitude of the electrostatic force on the proton when it islocated at the ball's surface, at radius R. As a multiple ofR, how far from the surface is there a point where the forcemagnitude is 0.44FR if we move the proton(a) away from the ball and (b) into the tunnel?
An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass of $$\displaystyle{6.64}\cdot{10}^{{-{27}}}$$ kg) traveling horizontally at 35.6 km/s enters a uniform, vertical, 1.10 T magnetic field.
Parametric equations and a value for the parameter t are given $$x = (60 cos 30^{\circ})t, y = 5 + (60 sin 30^{\circ})t - 16t2, t = 2$$. Find the coordinates of the point on the plane curve described by the parametric equations corresponding to the given value of t.
Parametric to polar equations Find an equation of the following curve in polar coordinates and describe the curve. $$x = (1 + cos t) cos t, y = (1 + cos t) sin t, 0 \leq t \leq 2\pi$$
Find sets of parametric equations and symmetric equations of the line that passes through the given point and is parallel to the given vector or line. (For each line, write the direction numbers as integers.) Point $$(-1,\ 0,\ 8)$$ Parallel to $$v = 3i\ +\ 4j\ -\ 8k$$ The given point is $$(−1,\ 0,\ 8)\ \text{and the vector or line is}\ v = 3i\ +\ 4j\ −\ 8k.$$ (a) parametric equations (b) symmetric equations