Using the upper left corner, \(t=90\)

The upper left triangle is a right isosceles \((45-45-90)\) triangle so: \(x=45\)

We have an equilateral triangle having all angles n: \(n=60\)

Using Angle Addition Postulate on the upper center of the figure, \(x+n+p= 180\)

\(45+60+p = 180\)

\(p=75\)

Using Triangle Sum Theorem on the lower left triangle, \(p+p+m= 180\)

\(75+75+m = 180\)

\(m=30\)

Using the lower left corner, \(p+s=90\)

\(75+s=90\)

\(s=15\)

Using Triangle Sum Theorem on the right-hand triangle, \((t+5)+n+w= 180\)

\((90+5)+60+w = 180\)

\(w=25\)

Using the upper right corner, \(f+w=9\)

\(f+25=90\)

\(f=65\)

Using Triangle Sum Theorem on the p — f — y triangle, \(p+f+y=180\)

\(75+65+y = 180\)

\(y=40\)

Using Triangle Sum Theorem on the bottom triangle, \(k+s+m=180\)

\(k+15+30=180\)

\(k=135\)