Question

Solving Multl-Step Equations (continued)

Right triangles and trigonometry
ANSWERED
asked 2021-07-04

Solving Multl-Step Equations (continued)

Answers (1)

2021-07-05

Using the upper left corner, \(t=90\)
The upper left triangle is a right isosceles \((45-45-90)\) triangle so: \(x=45\)
We have an equilateral triangle having all angles n: \(n=60\)
Using Angle Addition Postulate on the upper center of the figure, \(x+n+p= 180\)
\(45+60+p = 180\)
\(p=75\)
Using Triangle Sum Theorem on the lower left triangle, \(p+p+m= 180\)
\(75+75+m = 180\)
\(m=30\)
Using the lower left corner, \(p+s=90\)
\(75+s=90\)
\(s=15\)
Using Triangle Sum Theorem on the right-hand triangle, \((t+5)+n+w= 180\)
\((90+5)+60+w = 180\)
\(w=25\)
Using the upper right corner, \(f+w=9\)
\(f+25=90\)
\(f=65\)
Using Triangle Sum Theorem on the p — f — y triangle, \(p+f+y=180\)
\(75+65+y = 180\)
\(y=40\)
Using Triangle Sum Theorem on the bottom triangle, \(k+s+m=180\)
\(k+15+30=180\)
\(k=135\)

0
 
Best answer

expert advice

Need a better answer?
...