We are given: \(\displaystyle{\left({3}\sqrt{{3}}-{3}{i}\right)}{\left({2}{i}\right)}\)

Apply distributive property: \(a(b+c)=ab+ac =6i \sqrt{3}-6i^{2}\)

Substitute \(i^{2}=-1:=6i \sqrt{3}+6 =6+6i \sqrt{3}\)

Question

asked 2021-06-02

Find the angle between the given vectors . Round to the nearest tenth of a degree.

1) u= -3i +6j ,v=5i + 2j

2) u= i -j , v=2i +3j

Use the dot product to determiine wheter the vectors are parallel, orthogonal , or neither .

1) v = 2i +j, w = i-2j

2) v = 4i-j , w=8i-2j

3) v= 3i +3j , w=3i -2j

Find proj w v

1) v = 2i +3j . w = 8i- 6j

2) v= 2i -3j . w =-3i +j

1) u= -3i +6j ,v=5i + 2j

2) u= i -j , v=2i +3j

Use the dot product to determiine wheter the vectors are parallel, orthogonal , or neither .

1) v = 2i +j, w = i-2j

2) v = 4i-j , w=8i-2j

3) v= 3i +3j , w=3i -2j

Find proj w v

1) v = 2i +3j . w = 8i- 6j

2) v= 2i -3j . w =-3i +j

asked 2021-06-04

How do you find percents of data and probabilities of events associated with normal distributions?

asked 2021-06-03

\(\displaystyle{4}{\left({3}^{{2}}{x}+{1}\right)}+{17}{\left({3}^{{x}}\right)}={7}\)

asked 2021-05-19

For each of the models listed below, predict y when x=2.

a) \(\displaystyle{y}ˆ={1.2}+{0.8}{\log{{x}}}\),

b) \(\displaystyle{\log{{y}}}ˆ={1.2}+{0.8}{x}\),

c) \(\displaystyle{\ln{{y}}}ˆ={1.2}+{0.8}{\ln{{x}}}\),

d) \(\displaystyle{y}ˆ{2}={1.2}+{0.8}{x}\),

e) \(\displaystyle{1}{y}ˆ√={1.2}+{0.8}{x}\)

a) \(\displaystyle{y}ˆ={1.2}+{0.8}{\log{{x}}}\),

b) \(\displaystyle{\log{{y}}}ˆ={1.2}+{0.8}{x}\),

c) \(\displaystyle{\ln{{y}}}ˆ={1.2}+{0.8}{\ln{{x}}}\),

d) \(\displaystyle{y}ˆ{2}={1.2}+{0.8}{x}\),

e) \(\displaystyle{1}{y}ˆ√={1.2}+{0.8}{x}\)