That parametric equations contain more information than just the shape of the curve. Write a short paragraph explaining this statement. Use the following example and your answers to parts (a) and (b) below in your explanation. The position of a particle is given by the parametric equations x = sin (t) and y = cos (t) where t represents time. We know that the shape of the path of the particle is a circle. a) How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. b) Does the particle travel clockwise or counterclockwise around the circle? Find parametric equations if the particle moves in the opposite direction around the circle.

That parametric equations contain more information than just the shape of the curve. Write a short paragraph explaining this statement. Use the following example and your answers to parts (a) and (b) below in your explanation. The position of a particle is given by the parametric equations x = sin (t) and y = cos (t) where t represents time. We know that the shape of the path of the particle is a circle. a) How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. b) Does the particle travel clockwise or counterclockwise around the circle? Find parametric equations if the particle moves in the opposite direction around the circle.

Question
That parametric equations contain more information than just the shape of the curve. Write a short paragraph explaining this statement. Use the following example and your answers to parts (a) and (b) below in your explanation. The position of a particle is given by the parametric equations \(x =\ \sin\ (t)\ and\ y =\ \cos\ (t)\) where t represents time. We know that the shape of the path of the particle is a circle. a) How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. b) Does the particle travel clockwise or counterclockwise around the circle? Find parametric equations if the particle moves in the opposite direction around the circle.

Answers (1)

2020-10-28
Step 1 (a) Note that, the position of the particle is given by the parametric equations \(x =\ \sin t,\ and\ y =\ \cos\ t\). The parametric equations contain more than just shape of the curve. They also represent the direction of curve as traveling. If a position of a particle is determined by the equation \(x =\ \sin\ t,\ y =\ \cos\ t,\) this set of equations denotes which direction the particle is traveling based on different times t. For example, at \(t = 0,\ \text{the particle is at the point}\ (0,\ 1)\ \text{but at time}\ t=\ \frac{\pi}{2}\ \text{the particle has moved to the point}\ (1,\ 0)\) in a clockwise direction As the period of the parametric equations is \(2\ \pi\), to find for the particle to travel a full rotation around the circle. It will take the time \(t = 2\ \pi\) to traverse the circle in a clockwise direction. To travel the circle twice as fast simply double the coefficient inside each trigonometric function and the parametric equations are \(x =\ \sin\ 2t,\ y =\ \cos\ 2t.\) Thus, the time that will be taken by the particle to go once around the circle is \(t = 2\ \pi\ \text{and the parametric equations, the particle moves twice as fast around the circle are}\ x =\ \sin\ 2t,\ y =\ \cos\ 2t.\) Step 2 (b) Note that, the particle travels clockwise. For example, at \(t = 0,\ \text{the particle is at the point}\ (0,\ 1),\ \text{but at the time}\ t =\ \frac{\pi}{2}\ \text{the particle has moved to the point}\ (1,\ 0)\) in a clockwise direction. The parametric equations when the particle travels in the opposite direction, the parametric equations will be exchanged. That are, \(x =\ \cos\ t,\ y =\ \sin\ t.\) Thus, the particle travels clockwise and if the particle travels in opposite direction around the circle, the parametric equations are \(x =\ \cos\ t,\ y =\ \sin\ t.\)
0

Relevant Questions

asked 2020-11-17
Write a short paragraph explaining this statement. Use the following example and your answers How long does it take the particle to go once around the circle? Find parametric equations if the particle moves twice as fast around the circle. The position of a particle is given by the parametric equations \(x = sin t, y = cos t\) where 1 represents time. We know that the shape of the path of the particle is a circle.
asked 2021-03-18
Write a short paragraph explaining this statement. Use the following example and your answers Does the particle travel clockwise or anticlockwise around the circle? Find parametric equations if the particles moves in the opposite direction around the circle. The position of a particle is given by the parametric equations \(x = sin t, y = cos t\) where 1 represents time. We know that the shape of the path of the particle is a circle.
asked 2021-03-05
1. A curve is given by the following parametric equations. x = 20 cost, y = 10 sint. The parametric equations are used to represent the location of a car going around the racetrack. a) What is the cartesian equation that represents the race track the car is traveling on? b) What parametric equations would we use to make the car go 3 times faster on the same track? c) What parametric equations would we use to make the car go half as fast on the same track? d) What parametric equations and restrictions on t would we use to make the car go clockwise (reverse direction) and only half-way around on an interval of [0, 2?]? e) Convert the cartesian equation you found in part “a” into a polar equation? Plug it into Desmos to check your work. You must solve for “r”, so “r = ?”
asked 2021-02-25
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
asked 2021-05-05

A random sample of \( n_1 = 14 \) winter days in Denver gave a sample mean pollution index \( x_1 = 43 \).
Previous studies show that \( \sigma_1 = 19 \).
For Englewood (a suburb of Denver), a random sample of \( n_2 = 12 \) winter days gave a sample mean pollution index of \( x_2 = 37 \).
Previous studies show that \( \sigma_2 = 13 \).
Assume the pollution index is normally distributed in both Englewood and Denver.
(a) State the null and alternate hypotheses.
\( H_0:\mu_1=\mu_2.\mu_1>\mu_2 \)
\( H_0:\mu_1<\mu_2.\mu_1=\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1<\mu_2 \)
\( H_0:\mu_1=\mu_2.\mu_1\neq\mu_2 \)
(b) What sampling distribution will you use? What assumptions are you making? NKS The Student's t. We assume that both population distributions are approximately normal with known standard deviations.
The standard normal. We assume that both population distributions are approximately normal with unknown standard deviations.
The standard normal. We assume that both population distributions are approximately normal with known standard deviations.
The Student's t. We assume that both population distributions are approximately normal with unknown standard deviations.
(c) What is the value of the sample test statistic? Compute the corresponding z or t value as appropriate.
(Test the difference \( \mu_1 - \mu_2 \). Round your answer to two decimal places.) NKS (d) Find (or estimate) the P-value. (Round your answer to four decimal places.)
(e) Based on your answers in parts (i)−(iii), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level \alpha?
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are not statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we fail to reject the null hypothesis and conclude the data are statistically significant.
At the \( \alpha = 0.01 \) level, we reject the null hypothesis and conclude the data are not statistically significant.
(f) Interpret your conclusion in the context of the application.
Reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is insufficient evidence that there is a difference in mean pollution index for Englewood and Denver.
Fail to reject the null hypothesis, there is sufficient evidence that there is a difference in mean pollution index for Englewood and Denver. (g) Find a 99% confidence interval for
\( \mu_1 - \mu_2 \).
(Round your answers to two decimal places.)
lower limit
upper limit
(h) Explain the meaning of the confidence interval in the context of the problem.
Because the interval contains only positive numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, we can not say that the mean population pollution index for Englewood is different than that of Denver.
Because the interval contains both positive and negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is greater than that of Denver.
Because the interval contains only negative numbers, this indicates that at the 99% confidence level, the mean population pollution index for Englewood is less than that of Denver.
asked 2020-11-06
Determine the area of the region below the parametric curve given by the set of parametric equations. For each problem you may assume that each curve traces out exactly once from right to left for the given range of t. For these problems you should only use the given parametric equations to determine the answer. 1.\(x = t^2 + 5t - 1 y = 40 - t^2 -2 \leq t \leq 5\) 2.\(x = 3cos^2 (t) — sin^2 (t) y = 6 + cos(t) -\frac{\pi}{2} \neq t \leq 0\) 3.\(x = e^{\frac{1}{4} t} —2 y = 4 + e^{\frac{1}{4 t}} — e^{\frac{1}{4} t} - 6 \leq t \leq 1\)
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-05-20
Assume that a ball of charged particles has a uniformly distributednegative charge density except for a narrow radial tunnel throughits center, from the surface on one side to the surface on the opposite side. Also assume that we can position a proton any where along the tunnel or outside the ball. Let \(\displaystyle{F}_{{R}}\) be the magnitude of the electrostatic force on the proton when it islocated at the ball's surface, at radius R. As a multiple ofR, how far from the surface is there a point where the forcemagnitude is 0.44FR if we move the proton(a) away from the ball and (b) into the tunnel?
asked 2021-02-27
An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass of \(\displaystyle{6.64}\cdot{10}^{{-{27}}}\) kg) traveling horizontally at 35.6 km/s enters a uniform, vertical, 1.10 T magnetic field.
A) What is the diameter of the path followed by this alpha particle?
B) What effect does the magnetic field have on the speed of the particle?
C) What are the magnitude of the acceleration of the alpha particle while it is in the magnetic field?
D) What are the direction of the acceleration of the alpha particle while it is in the magnetic field?
asked 2021-05-12
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
...