1)If \(a_n\) and f(n) satisty the requirements of the integral test, then \(\sum_{n=1}^{\infty} a_n = \int_1^{\infty} f(x)dx\)

2)The series \(\sum_{n=1}^{\infty} \frac{1}{n^p}\ \text{converges if} p > 1\ \text{and diverges if}\ p \leq 1\).

3) The integral test can be applied to both covergent and divergent testedherefore E.Only statements 1 and 2 are true.