emancipezN
2021-01-08
Answered

Investigation Consider the helix represented by the vector-valued function$r(t)=\text{}\text{}2\text{}\mathrm{cos}\text{}t,\text{}2\text{}\mathrm{sin}\text{}t,\text{}t\text{}$ (a) Write the length of the arc son the helix as a function of t by evaluating the integral$s=\text{}{\int}_{0}^{t}\text{}\sqrt{[{x}^{\prime}(u){]}^{2}\text{}+\text{}[{y}^{\prime}(u){]}^{2}\text{}+\text{}[{z}^{\prime}(u){]}^{2}\text{}du}$

You can still ask an expert for help

crocolylec

Answered 2021-01-09
Author has **100** answers

To calculate: The length of the arc s on the helix as a function of tThe length of the curve is $\underset{\u2015}{s=\text{}\sqrt{5t}}.$ Used formula: $s=\text{}{\int}_{0}^{t}\text{}\sqrt{[{x}^{\prime}(t){]}^{2}\text{}+\text{}[{y}^{\prime}(t){]}^{2}\text{}+\text{}[{z}^{\prime}(t){]}^{2}\text{}dt}$ Calculation:The helix path is,$r(t)=\text{}\text{}2\text{}\mathrm{cos}\text{}t,\text{}2\text{}\mathrm{sin}\text{}t,\text{}t\text{}$ On differentiating this vector value function,${r}^{\prime}(t)=\text{}\text{}-2\text{}\mathrm{sin}\text{}t,\text{}2\text{}\mathrm{cos}\text{}t,\text{}1\text{}$ Calculate the length of the line segment for the given interval as$s=\text{}{\int}_{0}^{t}\text{}\sqrt{[{x}^{\prime}(t){]}^{2}\text{}+\text{}[{y}^{\prime}(t){]}^{2}\text{}+\text{}[{z}^{\prime}(t){]}^{2}\text{}dt}$

$=\text{}{\int}_{0}^{t}\text{}\sqrt{(-2\text{}\mathrm{sin}\text{}t{)}^{2}\text{}+\text{}(2\text{}\mathrm{cos}\text{}t{)}^{2}\text{}+\text{}(1{)}^{2}\text{}dt}$

$=\text{}{\int}_{0}^{t}\text{}\sqrt{5dt}$

$=\sqrt{5t}$ Thus, the arc length is $s=\sqrt{5t}.$

asked 2021-06-11

Find the area of the parallelogram with vertices A(-3, 0), B(-1, 5), C(7, 4), and D(5, -1).

asked 2022-07-27

Polar coordinates of a point are given. Find therectangular coordinates of the point. $(-3,-{135}^{\circ})$

asked 2022-04-14

Find semi-major/semi-minor axis of ellipse from parametric equations with different phase

$x=\hat{x}\cdot \mathrm{cos}(\Omega t-\theta )$

$y=\hat{y}\cdot \mathrm{sin}(\Omega t-\phi )$

asked 2022-06-01

Calculate ${\int}_{-\mathrm{\infty}}^{\mathrm{\infty}}\text{}\frac{dx}{\sqrt{1+{x}^{4}}}\text{}x\text{}\mathrm{sin}[n\pi \varphi (x)]\text{}$; $\varphi (x)\propto {\int}_{0}^{x}\frac{dy}{\sqrt{1+{y}^{4}}}$

asked 2021-11-06

The following are each a result of a single transformation. What type of transformation occurred for image F'.

asked 2022-06-14

I am attempting to use Euler's method to express the following system of ODE's...

$\frac{d{y}_{i}}{dx}={c}_{i}({y}_{i-1}^{3}-{y}_{i}^{3})+{f}_{i}\phantom{\rule{2em}{0ex}}(\text{for}i=1,\dots ,n)$

using the discretised equations, which are presented below in matrix notation:

$\mathit{y}({t}_{k+1})={\mathit{C}}_{1}\mathit{y}({t}_{k})+{\mathit{C}}_{2}{\mathit{y}}^{3}({t}_{k})+\mathit{f}$

Note ${f}_{i}=1$ when $i=1$, but otherwise equals 0 (this considers the initial condition). Whilst I am familiar with Euler's method, I am unsure of the steps to get to the first equation to the second. Can anyone assist me with this? Understanding this is necessary for a project I'm working on, so I would really appreciate any help.

$\frac{d{y}_{i}}{dx}={c}_{i}({y}_{i-1}^{3}-{y}_{i}^{3})+{f}_{i}\phantom{\rule{2em}{0ex}}(\text{for}i=1,\dots ,n)$

using the discretised equations, which are presented below in matrix notation:

$\mathit{y}({t}_{k+1})={\mathit{C}}_{1}\mathit{y}({t}_{k})+{\mathit{C}}_{2}{\mathit{y}}^{3}({t}_{k})+\mathit{f}$

Note ${f}_{i}=1$ when $i=1$, but otherwise equals 0 (this considers the initial condition). Whilst I am familiar with Euler's method, I am unsure of the steps to get to the first equation to the second. Can anyone assist me with this? Understanding this is necessary for a project I'm working on, so I would really appreciate any help.

asked 2021-04-11

Factor each polynomial. If a polynomial cannot be factored, write prime. Factor out the greatest common factor is necessary:

$9{x}^{2}+64$