Find the limit, if it exists. (If an answer does not exist, enter DNE.)

$lim\mathrm{arctan}({e}^{x})$

$x\approx \mathrm{\infty}$

ankarskogC
2021-05-02
Answered

Find the limit, if it exists. (If an answer does not exist, enter DNE.)

$lim\mathrm{arctan}({e}^{x})$

$x\approx \mathrm{\infty}$

You can still ask an expert for help

cyhuddwyr9

Answered 2021-05-03
Author has **90** answers

Step 1

$lim\mathrm{arctan}({e}^{x})=\mathrm{arctan}({e}^{\mathrm{\infty}})$

$=\mathrm{arctan}(\mathrm{\infty})=\frac{\pi}{2}$

asked 2021-10-21

Use continuity to evaluate the limit

$\underset{x\to 4}{lim}\frac{12+\sqrt{x}}{\sqrt{12+x}}$

To find:

a) Domain of Numerator of function

b) Domain of denominator of the function

c) limit

To find:

a) Domain of Numerator of function

b) Domain of denominator of the function

c) limit

asked 2022-04-21

How is

$\underset{h\to 0}{lim}\frac{{3}^{h}-1}{h}=\mathrm{ln}3$

evaluated?

evaluated?

asked 2021-11-17

Evaluate the limit, if it exists.

$\underset{x\to 9}{lim}\frac{3-\sqrt{x}}{9x-{x}^{2}}$

asked 2021-11-08

Use l'Hospital Rule to evaluate $\underset{x\to \mathrm{\infty}}{lim}\frac{2{x}^{2}-5x}{9{x}^{2}+7}$ , Then determine the limit using limit laws and commonly known limits.

asked 2021-01-27

Find the limit.

$\underset{x\to (\pi /2)}{lim}\frac{\mathrm{sec}x}{\mathrm{tan}x}$

asked 2021-10-16

Compute the limits. Justify your answer.

a)$\underset{x\to \mathrm{\infty}}{lim}\frac{16{x}^{3}-19{x}^{2}+7x+11}{5{x}^{2}-10{x}^{3}-19x+100}$

b)$\underset{x\to \mathrm{\infty}}{lim}\frac{{x}^{\frac{5}{7}}}{17x+29}$

a)

b)

asked 2021-10-22

Calculate the following limits, if they exist, by using a combination of polar coordinates and de L’Hopital rule.

$\underset{(x,y)\to (0,0)}{lim}\frac{\mathrm{arctan}({x}^{2}+{y}^{2})}{{x}^{2}+{y}^{2}}$