Question

Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.) \int37e^{74x}\arctan(e^{37x})dx Inverse Trigonometric Forms (92): \int u\tan^{-1}u\ du=\frac{u^{2}+1}{2}\tan^{-1}u-\frac{u}{2}+C

Integrals
ANSWERED
asked 2021-05-14
Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
\(\int37e^{74x}\arctan(e^{37x})dx\)
Inverse Trigonometric Forms (92): \(\int u\tan^{-1}u\ du=\frac{u^{2}+1}{2}\tan^{-1}u-\frac{u}{2}+C\)

Answers (1)

2021-05-15

Step 1
\(\int(37)\cdot e^{74x}\cdot\tan^{-1}(e^{37x})dx\)
\(\Rightarrow e^{37x}=t\Rightarrow(37)e^{37x}\cdot dx=dt\)\(=\int t\cdot\tan^{-1}(t)dt\)
From table given formula number 92:
\(\int u\cdot\tan^{-1}u\cdot du=\frac{u^{2}+1}{2}\tan^{-1}u-\frac{u}{2}+C\)
\(\Rightarrow\frac{t^{2}+1}{2}\tan^{-1}t-\frac{t}{2}+C\)
\(\Rightarrow\frac{e^{74x}+1}{2}\tan^{-1}(e^{37x})-\frac{e^{37x}}{2}+C\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...