Question

asked 2021-06-05

Evaluate the integral by reversing the order of integration

\(\int_0^1 \int_{3y}^3 e^{x^2}dx dy\)

\(\int_0^1 \int_{3y}^3 e^{x^2}dx dy\)

asked 2021-05-17

The integral represents the volume of a solid. Describe the solid.

\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)

a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.

b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.

c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.

d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.

e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.

\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)

a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.

b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.

c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.

d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.

e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.

asked 2021-05-09

Evaluate the line integral, where C is the given curve.

\(\int_{C}xy\ ds\)

\(C:x=t^{2},\)

\(y=2t,\)

\(0\leq t\leq4\)

\(\int_{C}xy\ ds\)

\(C:x=t^{2},\)

\(y=2t,\)

\(0\leq t\leq4\)

asked 2021-05-04

Evaluate the definite integral.

\(\int_0^1 \sqrt[3]{1+7x}dx\)

\(\int_0^1 \sqrt[3]{1+7x}dx\)