Question

Calculate the iterated integral. \int_{0}^{3} \int_{0}^{1} 4xy(\sqrt{x^2+y^2})dy dx

Integrals
ANSWERED
asked 2021-05-23
Calculate the iterated integral.
\(\int_{0}^{3} \int_{0}^{1} 4xy(\sqrt{x^2+y^2})dy dx\)

Expert Answers (2)

2021-05-24
image
image
image
23
 
Best answer
2021-09-08

Consider the iterated integral

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx\)

The objective is to calculated the iterated integral

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx\)

To evaluate the iterated integral, first find the integral with respect to "y" and then apply the integral with respect to "x"\(\int_0^3\int_0^14xy(\sqrt{x^2+y^2})dydx=\int_0^3\int_0^1(2x)(2y)(\sqrt{x^2+y^2})dydx\)

\(=\int_0^3\int_0^1(2x)(\sqrt{4})dudx\)

\(=\int_0^3\int_0^1(2x)(4^{\frac{1}{2}})dudx\)

\(=\int_0^3(2x)\left(\frac{4^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right)_0^1dx\)

\(=\int_0^3(2x)\left(\frac{4^{\frac{3}{2}}}{\frac{3}{2}}\right)_0^1dx\)

\(=\int_0^3(2x)\cdot\frac{2}{3}(4^{\frac{3}{2}})_0^1dx\)

\(=\int_0^3\frac{4x}{3}((x^2+y^2)^{\frac{3}{2}})_0^1dx\)

\(=\int_0^3\frac{4x}{3}((x^2+(1)^2)^{\frac{3}{2}}-(x^2+(0)^2)^{\frac{3}{2}}dx\)

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx=\int_0^3\frac{4x}{3}((x^2+1)^{\frac{3}{2}}-(x^2)^{\frac{3}{2}})dx\)

Continuous from the last step

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx=\int_0^3\frac{4x}{3}((x^2+1)^{\frac{3}{2}}-(x^2)^{\frac{3}{2}})dx\)

\(=\int_0^3\frac{4x}{3}((x^2+1)^{\frac{3}{2}})dx-\int_0^3\frac{4x}{3}((x^2)^{\frac{3}{2}})dx\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\int_0^3\frac{4x}{3}((x^2)^{\frac{3}{2}})dx\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\int_0^3\frac{4x}{3}(x^3)dx\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\int_0^3\frac{4}{3}(x^4)dx\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\frac{4}{3}(\frac{x^5}{5})_0^3\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\frac{4}{15}(x^5)_0^3\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\frac{4}{15}((3)^5-(0^5))\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\frac{4}{15}(243-0)\)

\(=\int_0^3\frac{2}{3}\cdot2x((x^2+1)^{\frac{3}{2}})dx-\frac{972}{15}\)

\(=\int_0^3\frac{2}{3}((4)^{\frac{3}{2}})du-\frac{972}{15}\)

\(\int_0^3\int_0^14xy(\sqrt{x^2+y^2})dydx=\frac{2}{3}\left(\frac{4^{\frac{3}{2}+1}}{\frac{3}{2}+1}\right)_0^3-\frac{972}{15}\)

\(=\frac{2}{3}\left(\frac{4^{\frac{5}{2}}}{\frac{5}{2}}\right)_0^3-\frac{972}{15}\)

\(=\frac{2}{3}\cdot\frac{2}{5}(u^{\frac{5}{2}})_0^3-\frac{972}{15}\)

\(=\frac{4}{15}(u^{\frac{5}{2}})_0^3-\frac{972}{15}\)

\(=\frac{4}{15}((x^2+1)^{\frac{5}{2}})_0^3-\frac{972}{15}\)

\(=\frac{4}{15}(((3)^2+1)^{\frac{5}{2}})_0^3-\frac{972}{15}\)

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx=\frac{4}{15}((10)^{\frac{5}{2}}-(1)^\frac{5}{2})-\frac{972}{15}\)

\(=\frac{4}{15}(100\sqrt{10}-1)-\frac{972}{15}\)

\(=\frac{5\cdot80}{5\cdot3}\sqrt{10}-\frac{976}{15}\)

\(=\frac{80}{3}\sqrt{10}-\frac{976}{15}\)

Hence, the value for iterated integral is

\(\int_0^3\int_0^1 4xy(\sqrt{x^2+y^2})dydx=\frac{80}{3}\sqrt{10}-\frac{976}{15}\)

14

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-09-08
Calculate the iterated integral.
\(\displaystyle{\int_{{{0}}}^{{{3}}}}{\int_{{{0}}}^{{{1}}}}{4}{x}{y}{\left(\sqrt{{{x}^{{2}}+{y}^{{2}}}}\right)}{\left.{d}{y}\right.}{\left.{d}{x}\right.}\)
asked 2021-06-05
Evaluate the integral by reversing the order of integration
\(\int_0^1 \int_{3y}^3 e^{x^2}dx dy\)
asked 2021-08-14
Evaluate the iterated integral.
\(\displaystyle{\int_{{-{1}}}^{{{2}}}}{\int_{{{0}}}^{{{\frac{{\pi}}{{{2}}}}}}}{\left({y}{\sin{{x}}}\right)}{\left.{d}{x}\right.}{\left.{d}{y}\right.}\)
asked 2021-05-17
The integral represents the volume of a solid. Describe the solid.
\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)
a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.
b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.
c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.
d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.
e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.
...