Question

Prove the identity \frac{1}{2\csc 2x}=\cos^2 x \tan x Choose the sequence of steps below that verifies the identity A) \cos^2 x \tan x =\cos^2 x \frac

Trigonometric equation and identitie
ANSWERED
asked 2021-06-13
Prove the identity
\(\frac{1}{2\csc 2x}=\cos^2 x \tan x\)
Choose the sequence of steps below that verifies the identity
A) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x =\frac{\sin 2x}{2}=\frac{1}{2\csc 2x}\)
B) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=\frac{\sin 2x}{2}=\frac{1}{2 \csc 2x}\)
C) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
D) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)

Answers (1)

2021-06-14
image
0
 
Best answer

expert advice

Need a better answer?
...