.................................

avortarF

Answered 2021-06-12
Author has **19650** answers

asked 2021-08-15

Which set of ordered pairs could be generated by an exponential function?

A. \(\displaystyle{\left({1},{1}\right)}{\left({2},{\frac{{{1}}}{{{2}}}}\right)}{\left({3},{\frac{{{1}}}{{{3}}}}\right)}{\left({4},{\frac{{{1}}}{{{4}}}}\right)}\)

B. \(\displaystyle{\left({1},{1}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{9}}}}\right)}{\left({4},{\frac{{{1}}}{{{16}}}}\right)}\)

C. \(\displaystyle{\left({1},{\frac{{{1}}}{{{2}}}}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{8}}}}\right)}{\left({4},{\frac{{{1}}}{{{16}}}}\right)}\)

D. \(\displaystyle{\left({1},{\frac{{{1}}}{{{2}}}}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{6}}}}\right)}{\left({4},{\frac{{{1}}}{{{8}}}}\right)}\)

A. \(\displaystyle{\left({1},{1}\right)}{\left({2},{\frac{{{1}}}{{{2}}}}\right)}{\left({3},{\frac{{{1}}}{{{3}}}}\right)}{\left({4},{\frac{{{1}}}{{{4}}}}\right)}\)

B. \(\displaystyle{\left({1},{1}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{9}}}}\right)}{\left({4},{\frac{{{1}}}{{{16}}}}\right)}\)

C. \(\displaystyle{\left({1},{\frac{{{1}}}{{{2}}}}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{8}}}}\right)}{\left({4},{\frac{{{1}}}{{{16}}}}\right)}\)

D. \(\displaystyle{\left({1},{\frac{{{1}}}{{{2}}}}\right)}{\left({2},{\frac{{{1}}}{{{4}}}}\right)}{\left({3},{\frac{{{1}}}{{{6}}}}\right)}{\left({4},{\frac{{{1}}}{{{8}}}}\right)}\)

asked 2022-01-06

Which set of ordered pairs could be generated by an exponential function?

A. (1, 1) (2, 1/2) (3, 1/3) (4, 1/4)

B. (1, 1) (2, 1/4) (3, 1/9) (4 1/16)

C. (1, 1/2) (2, 1/4) (3, 1/8) (4, 1/16)

D. (1, 1/2) (2, 1/4) (3, 1/6) (4, 1/8)

A. (1, 1) (2, 1/2) (3, 1/3) (4, 1/4)

B. (1, 1) (2, 1/4) (3, 1/9) (4 1/16)

C. (1, 1/2) (2, 1/4) (3, 1/8) (4, 1/16)

D. (1, 1/2) (2, 1/4) (3, 1/6) (4, 1/8)

asked 2021-06-22

Which set of ordered pairs could be generated by an exponential function?
a. (0, 0), (1, 1), (2, 8), (3, 27)
b. (0, 1), (1, 2), (2, 5), (3, 10)
c. (0, 0), (1, 3), (2, 6), (3, 9)
d. (0, 1), (1, 3), (2, 9), (3, 27)

asked 2021-05-12

When a < 0 and b>1,y=abx models negative exponential growth. a. Write an exponential function that models negative growth. b. Give an example of a situation that could be modeled by your function. c. Explain one difference between negative exponential growth and exponential decay.

asked 2020-10-31

Which set of ordered pairs could be generated by an exponential function?

A. \(\displaystyle{\left(-{1},-\frac{{1}}{{2}}\right)}\), (0, 0),\(\displaystyle{\left({1},\frac{{1}}{{2}}\right)}\), (2, 1)

B. (–1, –1), (0, 0), (1, 1), (2, 8)

C. \(\displaystyle{\left(-{1},\frac{{1}}{{2}}\right)}\), (0, 1), (1, 2), (2, 4)

D. (–1, 1), (0, 0), (1, 1), (2, 4)

A. \(\displaystyle{\left(-{1},-\frac{{1}}{{2}}\right)}\), (0, 0),\(\displaystyle{\left({1},\frac{{1}}{{2}}\right)}\), (2, 1)

B. (–1, –1), (0, 0), (1, 1), (2, 8)

C. \(\displaystyle{\left(-{1},\frac{{1}}{{2}}\right)}\), (0, 1), (1, 2), (2, 4)

D. (–1, 1), (0, 0), (1, 1), (2, 4)

asked 2021-09-27

Choose the correct letter. Which of the following functions models exponential decay?

A. \(f(x)=12*3^x\)

B. \(y=2*0.8^x\)

C. \(y=-3x^2\)

D. \(f(x)=1.8^x\)

asked 2021-06-02

The table shows the populations P (in millions) of the United States from 1960 to 2000.
Year 1960 1970 1980 1990 2000 Popupation, P 181 205 228 250 282

(a) Use the 1960 and 1970 data to find an exponential model P1 for the data. Let t=0 represent 1960. (c) Use a graphing utility to plot the data and graph models P1 and P2 in the same viewing window. Compare the actual data with the predictions. Which model better fits the data? (d) Estimate when the population will be 320 million.

(a) Use the 1960 and 1970 data to find an exponential model P1 for the data. Let t=0 represent 1960. (c) Use a graphing utility to plot the data and graph models P1 and P2 in the same viewing window. Compare the actual data with the predictions. Which model better fits the data? (d) Estimate when the population will be 320 million.