Question

Evaluate the integral by reversing the order of integration \int_0^1 \int_{3y}^3 e^{x^2}dx dy

Integrals
ANSWERED
asked 2021-06-05
Evaluate the integral by reversing the order of integration
\(\int_0^1 \int_{3y}^3 e^{x^2}dx dy\)

Expert Answers (1)

2021-06-06

image
image

................................

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-09-07
Evaluate the integral by reversing the order of integration
\(\displaystyle{\int_{{0}}^{{1}}}{\int_{{{3}{y}}}^{{3}}}{e}^{{{x}^{{2}}}}{\left.{d}{x}\right.}{\left.{d}{y}\right.}\)
asked 2021-06-12
Explain why each of the following integrals is improper.
(a) \(\int_6^7 \frac{x}{x-6}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
(b)\(\int_0^{\infty} \frac{1}{1+x^3}dx\)
Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
The integral is a proper integral.
(c) \(\int_{-\infty}^{\infty}x^2 e^{-x^2}dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
d)\(\int_0^{\frac{\pi}{4}} \cot x dx\)
-Since the integral has an infinite interval of integration, it is a Type 1 improper integral.
-Since the integral has an infinite discontinuity, it is a Type 2 improper integral.
-The integral is a proper integral.
asked 2021-05-17
The integral represents the volume of a solid. Describe the solid.
\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)
a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.
b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.
c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.
d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.
e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.
asked 2021-08-17
Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
\(\displaystyle\int{37}{e}^{{{74}{x}}}{\arctan{{\left({e}^{{{37}{x}}}\right)}}}{\left.{d}{x}\right.}\)
Inverse Trigonometric Forms (92): \(\displaystyle\int{u}{{\tan}^{{-{1}}}{u}}\ {d}{u}={\frac{{{u}^{{{2}}}+{1}}}{{{2}}}}{{\tan}^{{-{1}}}{u}}-{\frac{{{u}}}{{{2}}}}+{C}\)
...