Question

Approximate the sum of the series correct to four decimal places. \sum_{n=1}^\infty \frac{(-1)^n}{(2n)!}

Decimals
ANSWERED
asked 2021-05-31
Approximate the sum of the series correct to four decimal places.
\(\sum_{n=1}^\infty \frac{(-1)^n}{(2n)!}\)

Answers (1)

2021-06-01

image
image

..............................

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-08-15
Approximate the sum of the series correct to four decimal places.
\(\displaystyle{\sum_{{{n}={1}}}^{\infty}}{\frac{{{\left(-{1}\right)}^{{n}}}}{{{\left({2}{n}\right)}!}}}\)
asked 2021-05-26
The exponential equation and approximate the result, correct to 9 decimal places.
a) \(3^{(4x-1)}=11\)
b) \(6^{x+3}=3^{x}\)
To solve for x.
asked 2021-05-21
The pmf of the amount of memory X (GB) in a purchased flash drive is given as the following.
\(\begin{array}{|c|c|}\hline x & 1 & 2 & 4 & 8 & 16 \\ \hline p(x) & 0.05 & 0.10 & 0.30 & 0.45 & 0.10 \\ \hline \end{array} \)
a) Compute E(X). (Enter your answer to two decimal places.) GB
b) Compute V(X) directly from the definition. (Enter your answer to four decimal places.) \(GB^{2}\)
c) Compute the standard deviation of X. (Round your answer to three decimal places.) GB
d) Compute V(X) using the shortcut formula. (Enter your answer to four decimal places.) \(GB^{2}\)
asked 2021-08-20
a) Write the sigma notation formula for the right Riemann sum \(\displaystyle{R}_{{{n}}}\) of the function \(\displaystyle{f{{\left({x}\right)}}}={4}-{x}^{{{2}}}\) on the interval \(\displaystyle{\left[{0},\ {2}\right]}\) using n subintervals of equal length, and calculate the definite integral \(\displaystyle{\int_{{{0}}}^{{{2}}}}{f{{\left({x}\right)}}}{\left.{d}{x}\right.}\) as the limit of \(\displaystyle{R}_{{{n}}}\) at \(\displaystyle{n}\rightarrow\infty\).
(Reminder: \(\displaystyle{\sum_{{{k}={1}}}^{{{n}}}}{k}={n}\frac{{{n}+{1}}}{{2}},\ {\sum_{{{k}={1}}}^{{{n}}}}{k}^{{{2}}}={n}{\left({n}+{1}\right)}\frac{{{2}{n}+{1}}}{{6}}{)}\)
b) Use the Fundamental Theorem of Calculus to calculate the derivative of \(\displaystyle{F}{\left({x}\right)}={\int_{{{e}^{{-{x}}}}}^{{{x}}}}{\ln{{\left({t}^{{{2}}}+{1}\right)}}}{\left.{d}{t}\right.}\)
...