...........................

Question

asked 2021-06-06

Use a double integral to find the area of the region. The region inside the circle \((x - 5)^2 + y^2 = 25\) and outside the circle \(x^2 + y^2 = 25\)

asked 2021-05-12

Find the area of the region enclosed by one loop of the curve

\(r=\sin 12 \theta\)

Find the area of the region that lies inside the first curve outside the second curve.

\(r=14 \cos \theta , r=7\)

\(r=\sin 12 \theta\)

Find the area of the region that lies inside the first curve outside the second curve.

\(r=14 \cos \theta , r=7\)

asked 2021-05-01

Find a Cartesian equation for the curve and identify it.

\(r^2 \cos 2\theta =1\)

\(r^2 \cos 2\theta =1\)

asked 2021-05-17

The integral represents the volume of a solid. Describe the solid.

\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)

a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.

b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.

c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.

d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.

e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.

\(\pi\int_{0}^{1}(y^{4}-y^{8})dy\)

a) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the x-axis.

b) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the x-axis.

c) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{2}\}\) of the xy-plane about the y-axis.

d) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{2}\leq x\leq y^{4}\}\) of the xy-plane about the y-axis.

e) The integral describes the volume of the solid obtained by rotating the region \(R=\{\{x,\ y\}|0\leq y\leq1,\ y^{4}\leq x\leq y^{8}\}\) of the xy-plane about the y-axis.