Question

Find the margin of error for the given values of c,s, and n. c=0.95, s=2.2, n=64

Significance tests
ANSWERED
asked 2021-05-28
Find the margin of error for the given values of c,s, and n. c=0.95, s=2.2, n=64

Answers (1)

2021-05-29
From the information, observe that the level of confidence is 0.95
The sample size is, n=64
The sample standard deviation is, s=2.2
The degrees of freedom is,
\(df=n-1\)
\(=64-1\)
\(=63\)
The level of significance is,
Level of significance=1- Level of confidence
\(=1-0.95\)
\(=0.95\)
From the standard t table values, observe that the critical value of t for the two tail test at the 5% level of significance and 63 degrees of freedom is 1.998
Using these value, observe that the t critical value as observing 0.05 in two tail at column wise and 63 degrees of freedom in row wise and identify the critical value (1.998) corresponding to the level of significance (0.05) and 63 degrees of freedom.
The calculation of the margin of error is,
\(ME=\frac{t_{a/2}\times s}{\sqrt{64}}\)
\(=\frac{(1.998)(2.2)}{8}\)
\(=\frac{4.396}{8}\)
\(=0.549\)
The calculated value of the margin of error is 0.549
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-13
For a test of \(H_{0}:\ p=0.5,\) the z test statistic equals 1.74. Find the p-value for \(H_{a}:\ p>0.5\).
a) 0.0446
b) 0.0409
c) 0.892
d) 0.9591
e) 0.0818
f) 0.9554
asked 2021-06-19
When two targets are presented close together in a rapid visual stream, the second target is often missed. Psychologists call this phenomenon the attentional blink (AB). A study published in Advances in Cognitive Psychology (July 2013) investigated whether simultaneous or preceding sounds could reduce AB. Twenty subjects were presented a rapid visual stream of symbols and letters on a computer screen and asked to identify the first and second letters (the targets). After several trials, the subject's AB magnitude was measured as the difference between the percentages of first target and second target letters correctly identified. Each subject performed the task under each of three conditions. In the Simultaneous condition, a sound (tone) was presented simultaneously with the second target; in the Alert condition, a sound was presented prior to the coming of the second target; and in the No-Tone condition, no sound was presented with the second target. Scatterplots of AB magnitude for each possible pair of conditions are shown below as well as the least squares line for each. a. Which pair of conditions produces the least squares line with the steepest estimated slope? b. Which pair of conditions produces the least squares line with the largest SSE? c. Which pair of conditions produces the least squares line with the smallest estímate of σ?
asked 2021-05-29
Construct the indicated confidence intervals for (a) the population variance
\(\displaystyle\sigma^{{{2}}}\)
and (b) the population standard deviation
\(\displaystyle\sigma\)
Assume the sample is from a normally distributed population.
\(\displaystyle{c}={0.95},{s}^{{{2}}}={11.56},{n}={30}\)
asked 2021-06-05
Use the following Normal Distribution table to calculate the area under the Normal Curve (Shaded area in the Figure) when \(Z=1.3\) and \(H=0.05\);
Assume that you do not have vales of the area beyond \(z=1.2\) in the table; i.e. you may need to use the extrapolation.
Check your calculated value and compare with the values in the table \([for\ z=1.3\ and\ H=0.05]\).
Calculate your percentage of error in the estimation.
How do I solve this problem using extrapolation?
\(\begin{array}{|c|c|}\hline Z+H & Prob. & Extrapolation \\ \hline 1.20000 & 0.38490 & Differences \\ \hline 1.21000 & 0.38690 & 0.00200 \\ \hline 1.22000 & 0.38880 & 0.00190 \\ \hline 1.23000 & 0.39070 & 0.00190 \\ \hline 1.24000 & 0.39250 & 0.00180 \\ \hline 1.25000 & 0.39440 & 0.00190 \\ \hline 1.26000 & 0.39620 & 0.00180 \\ \hline 1.27000 & 0.39800 & 0.00180 \\ \hline 1.28000 & 0.39970 & 0.00170 \\ \hline 1.29000 & 0.40150 & 0.00180 \\ \hline 1.30000 & 0.40320 & 0.00170 \\ \hline 1.31000 & 0.40490 & 0.00170 \\ \hline 1.32000 & 0.40660 & 0.00170 \\ \hline 1.33000 & 0.40830 & 0.00170 \\ \hline 1.34000 & 0.41010 & 0.00180 \\ \hline 1.35000 & 0.41190 & 0.00180 \\ \hline \end{array}\)
asked 2021-05-14
When σ is unknown and the sample size is \(\displaystyle{n}\geq{30}\), there are tow methods for computing confidence intervals for μμ. Method 1: Use the Student's t distribution with d.f. = n - 1. This is the method used in the text. It is widely employed in statistical studies. Also, most statistical software packages use this method. Method 2: When \(\displaystyle{n}\geq{30}\), use the sample standard deviation s as an estimate for σσ, and then use the standard normal distribution. This method is based on the fact that for large samples, s is a fairly good approximation for σσ. Also, for large n, the critical values for the Student's t distribution approach those of the standard normal distribution. Consider a random sample of size n = 31, with sample mean x¯=45.2 and sample standard deviation s = 5.3. (c) Compare intervals for the two methods. Would you say that confidence intervals using a Student's t distribution are more conservative in the sense that they tend to be longer than intervals based on the standard normal distribution?
asked 2021-06-10
Determine whether the given set S is a subspace of the vector space V.
A. V=\(P_5\), and S is the subset of \(P_5\) consisting of those polynomials satisfying p(1)>p(0).
B. \(V=R_3\), and S is the set of vectors \((x_1,x_2,x_3)\) in V satisfying \(x_1-6x_2+x_3=5\).
C. \(V=R^n\), and S is the set of solutions to the homogeneous linear system Ax=0 where A is a fixed m×n matrix.
D. V=\(C^2(I)\), and S is the subset of V consisting of those functions satisfying the differential equation y″−4y′+3y=0.
E. V is the vector space of all real-valued functions defined on the interval [a,b], and S is the subset of V consisting of those functions satisfying f(a)=5.
F. V=\(P_n\), and S is the subset of \(P_n\) consisting of those polynomials satisfying p(0)=0.
G. \(V=M_n(R)\), and S is the subset of all symmetric matrices
asked 2021-06-04
Let \(X_{1}, X_{2},...,X_{n}\) be n independent random variables each with mean 100 and standard deviation 30. Let X be the sum of these random variables.
Find n such that \(Pr(X>2000)\geq 0.95\).
asked 2021-05-19

For each of the following, find the maximum and minimum values attained by the function f along the path c(t):
(b) \(f(x,y) = x^2 + y^2. c(t) = (\cos t, 2 \sin t).0 \leq t \leq 2 \pi\)

asked 2021-06-06
For each of the following, find the maximum and minimum values attained by the function f along the path c(t):
(a) \(f(x,y) = xy. c(t) = (cost,sint). 0 \leq t \leq 2 \pi\)
asked 2021-02-27
An alpha particle (a He nucleus, containing two protons and two neutrons and having a mass of \(\displaystyle{6.64}\cdot{10}^{{-{27}}}\) kg) traveling horizontally at 35.6 km/s enters a uniform, vertical, 1.10 T magnetic field.
A) What is the diameter of the path followed by this alpha particle?
B) What effect does the magnetic field have on the speed of the particle?
C) What are the magnitude of the acceleration of the alpha particle while it is in the magnetic field?
D) What are the direction of the acceleration of the alpha particle while it is in the magnetic field?

You might be interested in

...