Question

The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30,

Modeling data distributions
ANSWERED
asked 2021-06-09

The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58

\(\begin{array}{|c|c|} \hline \text{Class}&\text{Frequency}&\text{Relative Frequency}&\text{Cumulative Frequency}\\ \hline \text{10 but les than 20}&5\\ \hline \text{20 but les than 30}&4\\ \hline \text{30 but les than 40}&4\\ \hline \text{40 but les than 50}&5\\ \hline \text{50 but les than 60}&2\\ \hline \text{TOTAL}\\ \hline \end{array}\)

What is the Relative Frequency for the class: 20 but less than 30? State you answer as a value with exactly two digits after the decimal. for example 0.30 or 0.35

Answers (1)

2021-06-10

Step 1 Given The following table represents the Frequency Distribution and Cumulative Distributions for this data set: 12, 13, 17, 18, 18, 24, 26, 27, 27, 30, 30, 35, 37, 41, 42, 43, 44, 46, 53, 58

Step 2
Relative Frequency \( R_{f} = F_{i}\ \sum(F) \) Cumulative Frequency = It is the cumulative sum of frequency.

\(\begin{array}{|c|c|} \hline \text{Class}&\text{Frequency}&\text{Relative Frequency}&\text{Cumulative Frequency}&\text{Percentage}\\ \hline \text{10-19}&5&0.25&0.25&25\\ \hline \text{20-29}&4&0.2&0.4545\\ \hline \text{30-39}&4&0.2&0.65&65\\ \hline \text{40-49}&5&0.25&0.9&90\\ \hline \text{50-59}&2&0.10&1&100\\ \hline \text{TOTAL}&20\\ \hline \end{array}\)

What is the Relative Frequency for the class: 20 but less than 30? Answer : 0.20

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-01-17

Use the table from the Theoretical Distribution section to calculate the following answers. Round your answers to four decimal places. \(P(x = 3)=?\)
\(P(1 < x < 4) = ?\)
\(P(x \geq 8) = ?\) Use the data from the Organize the Data section to calculate the following answers. Round your answers to four decimal places. \(RF(x = 3) = ?\)
\(RF(1 < x < 4) =?\)
\(RF(x \geq 8) = ?\) Discussion Questions 1. Knowing that data vary, describe three similarities between the graphs and distributions of the theoretical, empirical, and simulation distributions. Use complete sentences.

asked 2020-11-30

Identifying Probability Distributions. In Exercises 7–14, determine whether a probability distribution is given. If a probability distribution is given, find its mean and standard deviation. If a probability distribution is not given, identify the requirements that are not satisfied. Cell Phone Use In a survey, cell phone users were asked which ear they use to hear their cell phone, and the table is based on their responses (based on data from “Hemispheric Dominance and Cell Phone Use,” by Seidman et al., JAMA Otolaryngology—Head & Neck Surgery , Vol. 139, No.

5). \(\begin{array}{|c|c|}& P(x)\\ Left & 0.636 \\ Right & 0.304 \\ No\ preference & 0.060\end{array}\)

asked 2021-03-02

The following observations are lifetimes (days) subsequent to diagnosis for individuals suffering from blood cancer ("A Goodness of Fit Approach to the Class of Life Distributions with Unknown Age," Quality and Reliability Engr. Intl., \(2012: 761-766): 115, 181, 255, 418, 441, 461, 516, 739, 743, 789, 807, 865, 924, 983, 1025, 1062, 1063, 1165, 1191, 1222, 1222, 1251, 1277, 1290, 1357, 1369, 1408, 1455, 1278, 1519, 1578, 1578, 1599, 1603, 1605, 1696, 1735, 1799, 1815, 1852, 1899, 1925, 1965.\)
a) can a confidence interval for true average lifetime be calculated without assuming anything about the nature of the lifetime distribution? Explain your reasoning. [Note: A normal probability plot of data exhibits a reasonably linear pattern.]
b) Calculate and interpret a confidence interval with a 99% confidence level for true average lifetime. [Hint: mean \(= 1191.6, s = 506.6\).]

asked 2020-12-30
The tables show the battery lives (in hours) of two brands of laptops. a) Make a double box-and-whisker plot that represent's the data. b) Identifity the shape of each distribution. c) Which brand's battery lives are more spread out? Explain. d) Compare the distributions using their shapes and appropriate measures of center and variation.
asked 2021-01-25

The following table shows the average yearly tuition and required fees, in thousand of dollars, charged by a certain private university in the school year beginning in the given year.
\(\begin{array}{|c|c|}\hline \text{Year} & \text{Average tuition} \\ \hline 2005 & $17.6 \\ \hline 2007 & $18.1 \\ \hline 2009 & $19.5 \\ \hline 2011 & $20.7 \\ \hline 2013 & $21.8 \\ \hline \end{array}\)
What prediction does the formula modeling this data give for average yearly tuition and required fees for the university for the academic year beginning in 2019?

asked 2021-03-02

An experiment designed to study the relationship between hypertension and cigarette smoking yielded the following data.
\(\begin{array}{|c|c|} \hline Tension\ level & Non-smoker & Moderate\ smoker & Heavy\ smoker \\ \hline Hypertension & 20 & 38 & 28 \\ \hline No\ hypertension & 50 & 27 & 18 \\ \hline \end{array}\)
Test the hypothesis that whether or not an individual has hypertension is independent of how much that person smokes.

asked 2021-03-11

Let's say the widget maker has developed the following table that shows the highest dollar price p. widget where you can sell N widgets. Number N Price p \(200 53.00\)
\(250 52.50\)
\(300 52.00\)
\(35051.50\)

(a) Find a formula for pin terms of N modeling the data in the table.

(b) Use a formula to express the total monthly revenue R, in dollars, of this manufacturer in month as a function of the number N of widgets produced in a month. \(R=\) Is Ra linear function of N?

(c) On the basis of the tables in this exercise and using cost, \(C= 35N + 900\), use a formula to express the monthly profit P, in dollars, of this manufacturer asa function of the number of widgets produced in a month \(p=\) ?

asked 2020-12-07

Would you rather spend more federal taxes on art? Of a random sample of \(n_{1} = 86\) politically conservative voters, \(r_{1} = 18\) responded yes. Another random sample of \(n_{2} = 85\) politically moderate voters showed that \(r_{2} = 21\) responded yes. Does this information indicate that the population proportion of conservative voters inclined to spend more federal tax money on funding the arts is less than the proportion of moderate voters so inclined? Use \(\alpha = 0.05.\)

a) State the null and alternate hypotheses.

 

\(H_0:p_{1} = p_{2}, H_{1}:p_{1} > p_2\)

\(H_0:p_{1} = p_{2}, H_{1}:p_{1} < p_2\)

\(H_0:p_{1} = p_{2}, H_{1}:p_{1} \neq p_2\)

\(H_{0}:p_{1} < p_{2}, H_{1}:p_{1} = p_{2}\)

b) What sampling distribution will you use? What assumptions are you making? The Student's t. The number of trials is sufficiently large. The standard normal. The number of trials is sufficiently large.The standard normal. We assume the population distributions are approximately normal. The Student's t. We assume the population distributions are approximately normal.

c)What is the value of the sample test statistic? (Test the difference \(p_{1} - p_{2}\). Do not use rounded values. Round your final answer to two decimal places.)

d) Find (or estimate) the P-value. (Round your answer to four decimal places.)

e) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level alpha? At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the \(\alpha = 0.05\) level, we fail to reject the null hypothesis and conclude the data are not statistically significant. At the \(\alpha = 0.05\) level, we reject the null hypothesis and conclude the data are not statistically significant.

f) Interpret your conclusion in the context of the application. Reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is sufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Fail to reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters. Reject the null hypothesis, there is insufficient evidence that the proportion of conservative voters favoring more tax dollars for the arts is less than the proportion of moderate voters.

asked 2020-12-28

The table shows the population of various cities, in thousands, and the average walking speed, in feet per second, of a person living in the city. \(\begin{array}{|c|c|} \hline Population\ (thousands) & Walking Speed\ (feet\ per\ second) \\ \hline 5.5 & 0.6 \\ \hline 14 & 1.0\\ \hline 71 & 1.6\\ \hline 138 & 1.9\\ \hline 342 & 2.2\\ \hline \end{array}\)

asked 2020-11-07

1)A rewiew of voted registration record in a small town yielded the dollowing data of the number of males and females registered as Democrat, Republican, or some other affilation:

\(\begin{array}{c} Gender \\ \hline Affilation & Male & Female \\ \hline Democrat & 300 & 600 \\ Republican & 500 & 300 \\ Other & 200 & 100 \\ \hline \end{array}\)

What proportion of all voters is male and registered as a Democrat? 2)A survey was conducted invocted involving 303 subject concerning their preferences with respect to the size of car thay would consider purchasing. The following table shows the count of the responses by gender of the respondents:

\(\begin{array}{c} Size\ of\ Car \\ \hline Gender & Small & Medium & lange & Total \\ \hline Female & 58 & 63 & 17 & 138 \\ Male & 79 & 61 & 25 & 165 \\ Total & 137 & 124 & 42 & 303 \\ \hline \end{array}\)

the data are to be summarized by constructing marginal distributions. In the marginal distributio for car size, the entry for mediums car is ?

You might be interested in

...