Step 1
Based on the concept of regression, the variance of residual is the same for any value of y-hat.
Step 2
Therefore, the correct answer is “Option B, The variance of the distributions around each possible value of y-hat is the same.”

Question

asked 2020-10-23

1. Find each of the requested values for a population with a mean of \(? = 40\), and a
standard deviation of \(? = 8\)
A. What is the z-score corresponding to \(X = 52?\)
B. What is the X value corresponding to \(z = - 0.50?\)
C. If all of the scores in the population are transformed into z-scores, what will be the values for the mean and standard deviation for the complete set of z-scores?
D. What is the z-score corresponding to a sample mean of \(M=42\) for a sample of \(n = 4\) scores?
E. What is the z-scores corresponding to a sample mean of \(M= 42\) for a sample of \(n = 6\) scores?
2. True or false:
a. All normal distributions are symmetrical
b. All normal distributions have a mean of 1.0
c. All normal distributions have a standard deviation of 1.0
d. The total area under the curve of all normal distributions is equal to 1
3. Interpret the location, direction, and distance (near or far) of the following zscores: \(a. -2.00 b. 1.25 c. 3.50 d. -0.34\)
4. You are part of a trivia team and have tracked your team’s performance since you started playing, so you know that your scores are normally distributed with \(\mu = 78\) and \(\sigma = 12\). Recently, a new person joined the team, and you think the scores have gotten better. Use hypothesis testing to see if the average score has improved based on the following 8 weeks’ worth of score data: \(82, 74, 62, 68, 79, 94, 90, 81, 80\).
5. You get hired as a server at a local restaurant, and the manager tells you that servers’ tips are $42 on average but vary about \($12 (\mu = 42, \sigma = 12)\). You decide to track your tips to see if you make a different amount, but because this is your first job as a server, you don’t know if you will make more or less in tips. After working 16 shifts, you find that your average nightly amount is $44.50 from tips. Test for a difference between this value and the population mean at the \(\alpha = 0.05\) level of significance.

asked 2021-06-19

When two targets are presented close together in a rapid visual stream, the second target is often missed. Psychologists call this phenomenon the attentional blink (AB). A study published in Advances in Cognitive Psychology (July 2013) investigated whether simultaneous or preceding sounds could reduce AB. Twenty subjects were presented a rapid visual stream of symbols and letters on a computer screen and asked to identify the first and second letters (the targets). After several trials, the subject's AB magnitude was measured as the difference between the percentages of first target and second target letters correctly identified. Each subject performed the task under each of three conditions. In the Simultaneous condition, a sound (tone) was presented simultaneously with the second target; in the Alert condition, a sound was presented prior to the coming of the second target; and in the No-Tone condition, no sound was presented with the second target. Scatterplots of AB magnitude for each possible pair of conditions are shown below as well as the least squares line for each. a. Which pair of conditions produces the least squares line with the steepest estimated slope? b. Which pair of conditions produces the least squares line with the largest SSE? c. Which pair of conditions produces the least squares line with the smallest estímate of σ?

asked 2021-02-25

We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

asked 2021-06-13

1. Who seems to have more variability in their shoe sizes, men or women?

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)