Substitute n=1, 2, 3, 4, 5 to find the first five sequences in the given sequence

\(\left\{\frac{2n-1}{3n+2}\right\}=\frac{}{}\)

\(\left\{\frac{2(1)-1}{3(1)+2}\right\}=\frac{1}{5}\)

\(\left\{\frac{2(2)-1}{3(2)+2}\right\}=\frac{3}{8}\)

\(\left\{\frac{2(3)-1}{3(3)+2}\right\}=\frac{5}{11}\)

\(\left\{\frac{2(4)-1}{3(4)+2}\right\}=\frac{7}{14}\)

\(\left\{\frac{2(5)-1}{3(5)+2}\right\}=\frac{9}{17}\)

\(\left\{\frac{2n-1}{3n+2}\right\}=\frac{}{}\)

\(\left\{\frac{2(1)-1}{3(1)+2}\right\}=\frac{1}{5}\)

\(\left\{\frac{2(2)-1}{3(2)+2}\right\}=\frac{3}{8}\)

\(\left\{\frac{2(3)-1}{3(3)+2}\right\}=\frac{5}{11}\)

\(\left\{\frac{2(4)-1}{3(4)+2}\right\}=\frac{7}{14}\)

\(\left\{\frac{2(5)-1}{3(5)+2}\right\}=\frac{9}{17}\)