Matrices C and D are shown below C=begin{bmatrix}2&1&0 0&3&40&2&1 end{bmatrix},D=begin{bmatrix}a & b&-0.4 0&-0.2&0.80&0.4&-0.6 end{bmatrix} What values of a and b will make the equation CD=I true? a)a=0.5 , b=0.1 b)a=0.1 , b=0.5 c)a=-0.5 , b=-0.1

Question
Matrices
asked 2021-02-13
Matrices C and D are shown below
C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix},D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}
What values of a and b will make the equation CD=I true?
a)a=0.5 , b=0.1
b)a=0.1 , b=0.5
c)a=-0.5 , b=-0.1

Answers (1)

2021-02-14
Step 1
The given matrices are,
\(C=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix}\text{ and }D=\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}
Step 2
Now multiply the matrices C and D as shown below.
\(CD=\begin{bmatrix}2&1&0 \\0&3&4\\0&2&1 \end{bmatrix}\begin{bmatrix}a & b&-0.4 \\0&-0.2&0.8\\0&0.4&-0.6 \end{bmatrix}\)
\(=\begin{bmatrix}2a+0+0 & 2b-0.2+0&-0.8+0.8+0 \\0+0+0 & 0-0.6+1.6&0+2.4-2.4\\0+0+0&0-0.4+0.4&0+1.6-0.6 \end{bmatrix}\)
\(=\begin{bmatrix}2a & 2b-0.2&0 \\0 & 1&0\\0&0&1 \end{bmatrix}\)
Step 3
Now equate the matrix CD to the identity matrix I and obtain the values of a and b as follows.
CD=I
\(\begin{bmatrix}2a & 2b-0.2&0 \\0 & 1&0\\0&0&1 \end{bmatrix}=\begin{bmatrix}1 & 0&0 \\0 & 1&0\\0&0&1 \end{bmatrix}\)
Two matrices are equal , only if the corresponding elements are equal.
\(2a=1\)
\(\Rightarrow a=0.5\)
and
\(2b-0.2=0\)
\(\Rightarrow b=0.1\)
Step 4
Therefore, the CD = I is true for a = 0.5 and b =0.1.
0

Relevant Questions

asked 2020-12-09
Given the matrices A and B shown below , solve for X in the equation \(-\frac{1}{3}X+\frac{1}{2}A=B\)
\(A=\begin{bmatrix}-10 & 4 \\8 & 8 \end{bmatrix}, B=\begin{bmatrix}9 & -1 \\4& 2 \end{bmatrix}\)
asked 2020-11-08
Classify each of the following matrices according as it is (a) real, (b) symmetric, (c) skew-symmetric, (d) Hermitian, or (e) skew-hermitian, and identify its principal and secondary diagonals.
\(\begin{bmatrix}1 & 0&-i \\ 0 & -2 & 4-i \\ i&4+i&3 \end{bmatrix}\)
\(\begin{bmatrix}7 & 0&4 \\ 0 & -2 & 10 \\ 4&10&5 \end{bmatrix}\)
asked 2020-12-16
Compute the following
a) \begin{bmatrix}-5 & -4&3&-10&-3&6 \\6&-10&5&9&4&-1 \end{bmatrix}+\begin{bmatrix}-7 & 3&10&0&8&8 \\8&0&4&-3&-8&0 \end{bmatrix}
b) -5\begin{bmatrix}8 & -10&7 \\0 & -9&7\\10&-5&-10\\1&5&-10 \end{bmatrix}
c)\begin{bmatrix}3 & 0&-8 \\6 & -4&-2\\6&0&-8\\-9&-7&-7 \end{bmatrix}^T
asked 2020-12-25
The 2 \times 2 matrices A and B below are related to matrix C by the equation: C=3A-2B. Which of the following is matrix C.
\(A=\begin{bmatrix}3 & 5 \\-2 & 1 \end{bmatrix} B=\begin{bmatrix}-4 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-1 & 5 \\2 & 1 \end{bmatrix}\)
\(\begin{bmatrix}-18 & 5 \\10 & 1 \end{bmatrix}\)
\(\begin{bmatrix}18 & -5 \\-10 & -1 \end{bmatrix}\)
\(\begin{bmatrix}1 & -5 \\-2 & -1 \end{bmatrix}\)
asked 2020-10-28
Consider the three following matrices:
\(A=\begin{bmatrix}1 & 0&0 \\0 & -1&0\\0&0&1 \end{bmatrix} , B=\begin{bmatrix}1 & 0&0 \\0 & 0&0\\0&0&-1 \end{bmatrix} \text{ and } C=\begin{bmatrix}0 & -i&0 \\i & 0&-i\\0&i&0 \end{bmatrix}\)
Calculate the Tr(ABC)
(a)1
(b)2
(c)2i
(d)0
asked 2021-01-25
Suppose that \(\begin{bmatrix}4 & A & 2&4 \\ -7 & -4 & -4 & B \end{bmatrix} + \begin{bmatrix}0 & 7& C&2 \\ 3 & D & 4 & -7 \end{bmatrix}=\begin{bmatrix}4 & 3 & 10&6 \\ -4 & -5 & 0 & -4 \end{bmatrix}\)
What are the values of A,B,C and D ?
asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
asked 2020-12-16
Consider the matrices
\(A=\begin{bmatrix}1 & -1 \\0 & 1 \end{bmatrix},B=\begin{bmatrix}2 & 3 \\1 & 5 \end{bmatrix},C=\begin{bmatrix}1 & 0 \\0 & 8 \end{bmatrix},D=\begin{bmatrix}2 & 0 &-1\\1 & 4&3\\5&4&2 \end{bmatrix} \text{ and } F=\begin{bmatrix}2 & -1 &0\\0 & 1&1\\2&0&3 \end{bmatrix}\)
a) Show that A,B,C,D and F are invertible matrices.
b) Solve the following equations for the unknown matrix X.
(i) \(AX^T=BC^3\)
(ii) \(A^{-1}(X-T)^T=(B^{-1})^T\)
(iii) \(XF=F^{-1}-D^T\)
asked 2020-11-10
If \(A=\begin{bmatrix}-2 & 1&-4 \\-2 & 4&-1 \\ 1 &-1 &-4 \end{bmatrix} \text{ and } B=\begin{bmatrix}-2 & 4&2 \\-4 & -1&1 \\ 4 &1 &1 \end{bmatrix}\)
then AB=?
BA=?
True or false : AB=BA for any two square matrices A and B of the same size.
asked 2021-02-09
find which of the given matrices are nonsingular.
a) \(\begin{bmatrix}1 & 2 &-3 \\-1 & 2&3 \\ 0 &8&0 \end{bmatrix}\)
b)\(\begin{bmatrix}1 & 2 &-3 \\-1 & 2&3 \\ 0 &1&1 \end{bmatrix}\)
c) \(\begin{bmatrix}1 & 1 &2 \\-1 & 3&4 \\ -5 &7&8 \end{bmatrix}\)
d) \(\begin{bmatrix}1 & 1 &4&-1 \\1 & 2&3&2 \\ -1 &3&2&1\\-2&6&12&-4 \end{bmatrix}\)
...