Determine whether the given sequence is arithmetic, geometric, or neither.

Mylo O'Moore 2021-03-08 Answered

Determine whether the given sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference, if it is geometric, find the common ratio. If the sequence is arithmetic or geometric,
find the sum of the first 50 terms.
{9=1011n}
What type of sequence is 9=1011n 

You can still ask an expert for help

Want to know more about Polynomial arithmetic?

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Maciej Morrow
Answered 2021-03-09 Author has 98 answers

Step 1
Since the expression is a linear function of "n". So it is arithmetic sequence.
Common difference is the coefficient of "n" that is =1011
Step 2
We will use the sum formula of first n natural numbers.
n=150(91011n)=n=150(91011n)n=150n
=9(50)1011×50(50+1)2
=4501011×50(51)2
=4501275011
=780011
Answer: Aritmetic sequence common difference =1011
=780011

Not exactly what you’re looking for?
Ask My Question

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more