Question

DISCOVER: Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q ae the same P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x +5 Q(x) = (((3x -

Polynomial arithmetic
ANSWERED
asked 2021-02-21

DISCOVER: Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q ae the same \(P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x +5\)
\(Q(x) = (((3x - 5)x + 1)x^3)x + 5\)
Try to evaluate P(2) and Q(2) in your head, using the forms given. Which is easier? Now write the polynomial
\(R(x) =x^{5} - 2x^{4} + 3x^{3} - 2x^{2} + 3x + 4\) in “nested” form, like the polynomial Q. Use the nested form to find R(3) in your head.
Do you see how calculating with the nested form follows the same arithmetic steps as calculating the value ofa polynomial using synthetic division?

Answers (1)

2021-02-22
Step 1
Given \(P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x + 5\)
\(Q(x) = (((3x - 5)x + 1)x-3)x+5\)
\(R(x) = x^{5} -2x^{4} + 3x^{3} - 2x^{2} + 3x + 4\)
Expand Q
\(Q(x) = (((3x - 5)x + 1)x-3)x + 5\)
\(=((3x^{2} - 5x + 1)x-3)x + 5\)
\(=(3x^{3} - 5x^{2} + x - 3)x + 5\)
\(= 3x^{4} - 5x^{3} + x^{2} - 3x + 5\)
\(\text{So}, P(x) = Q(x) = 3x^{4} -5x^{3} +x^{2} - 3x + 5\)
Hence proved
Step 2
Evaluate P(2) and Q(2)
\(P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x + 5\)
\(P(2) = 3(2)^{4} - 5(2)^{3} + (2)^{2} - 3(2) + 5\)
\(= 48 - 40 + 4 - 6 + 5\)
\(=11\)
\(Q(2) = (((3(2) - 5)2+1)2- 3) 2 + 5\)
\(=((3(2) + 1)2 - 3)2 +5\)
\(=((3(2) - 3)2 + 5\)
\(= (3)2+5\)
\(= 11\)
Nested form of R(x)
\(R(x) = x^{5} - 2x^{4} + 3x^{3} - 2x^{2} + 3x +4\)
\(R(x) = (x^{4} - 2x^{3} + 3x^{2} - 2x + 3)x +4\)
\(= ((x^{3} - 2x^{2} + 3x - 2)x + 3)x +4\)
\(= (((x^{2} - 2x + 3)x - 2)x + 3)x +4\)
\(= ((((x - 2)x + 3)x - 2)x + 3)x +4\)
\(R(x) = ((((x - 2)x + 3)x - 2)x + 3)x +4\)
\(R(3) = ((((3 - 2)3 + 3)3 - 2)3 + 3)3 + 4\)
\(=167\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-02-08

Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q ae the same \(\displaystyle{P}{\left({x}\right)}={3}{x}^{{4}}-{5}{x}^{{3}}+{x}^{{2}}-{3}{x}+{5}\ {Q}{\left({x}\right)}={\left({\left({\left({3}{x}-{5}\right)}{x}+{1}\right)}{x}-{3}\right)}{x}+{5}\) Try to evaluate P(2) and Q(2) in your head, using the forms given. Which is easier? Now write the polynomial \(\displaystyle{R}{\left({x}\right)}={x}^{{5}}—{2}{x}^{{4}}+{3}{x}^{{3}}—{2}{x}^{{3}}+{3}{x}+{4}\) in “nested” form, like the polynomial Q. Use the nested form to find R(3) in your head. Do you see how calculating with the nested form follows the same arithmetic steps as calculating the value ofa polynomial using synthetic division?

asked 2021-07-29
Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q are the same.
\(\displaystyle{P}{\left({x}\right)}={3}{x}^{{{4}}}-{5}{x}^{{{3}}}+{x}^{{{2}}}-{3}{x}+{5}\)
\(\displaystyle{Q}{\left({x}\right)}={\left({\left({\left({3}{x}-{5}\right)}{x}+{1}\right)}{x}-{3}\right)}{x}+{5}\)
Try to evalue P(2) and Q(2) in your head, using the forms given. Which is easier? Now write the polinomial \(\displaystyle{R}{\left({x}\right)}={x}^{{{5}}}-{2}{x}^{{{4}}}+{3}{x}^{{{3}}}-{2}{x}^{{{2}}}+{3}{x}+{4}\) in "nested" form, like the polinomial Q. Use the nested form to find R(3) in your head.
asked 2020-10-28

(a)To calculate: The following equation \({[(3x + 5)x + 4]x + 3} x + 1 = 3x^4 + 5x^3 + 4x^2 + 3x + 1\) is an identity, (b) To calculate: The lopynomial \(P(x) = 6x^5 - 3x^4 + 9x^3 + 6x^2 -8x + 12\) without powers of x as in patr (a).

asked 2021-02-20

Indicate whether the expression defines a polynomial function. \(\displaystyle{P}{\left({x}\right)}=−{x}{2}+{3}{x}+{3}\) polynomial or not a polynomial If it is a polynomial function, identify the following. (If it is not a polynomial function, enter DNE for all three answers.)

(a) Identify the leading coefficient.

(b) Identify the constant term.

(c) State the degree.

...