# DISCOVER: Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q ae the same P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x +5 Q(x) = (((3x -

DISCOVER: Nested Form of a Polynomial Expand Q to prove that the polynomials P and Q ae the same $$P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x +5$$
$$Q(x) = (((3x - 5)x + 1)x^3)x + 5$$
Try to evaluate P(2) and Q(2) in your head, using the forms given. Which is easier? Now write the polynomial
$$R(x) =x^{5} - 2x^{4} + 3x^{3} - 2x^{2} + 3x + 4$$ in “nested” form, like the polynomial Q. Use the nested form to find R(3) in your head.
Do you see how calculating with the nested form follows the same arithmetic steps as calculating the value ofa polynomial using synthetic division?

## Want to know more about Polynomial arithmetic?

• Questions are typically answered in as fast as 30 minutes

### Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

Step 1
Given $$P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x + 5$$
$$Q(x) = (((3x - 5)x + 1)x-3)x+5$$
$$R(x) = x^{5} -2x^{4} + 3x^{3} - 2x^{2} + 3x + 4$$
Expand Q
$$Q(x) = (((3x - 5)x + 1)x-3)x + 5$$
$$=((3x^{2} - 5x + 1)x-3)x + 5$$
$$=(3x^{3} - 5x^{2} + x - 3)x + 5$$
$$= 3x^{4} - 5x^{3} + x^{2} - 3x + 5$$
$$\text{So}, P(x) = Q(x) = 3x^{4} -5x^{3} +x^{2} - 3x + 5$$
Hence proved
Step 2
Evaluate P(2) and Q(2)
$$P(x) = 3x^{4} - 5x^{3} + x^{2} - 3x + 5$$
$$P(2) = 3(2)^{4} - 5(2)^{3} + (2)^{2} - 3(2) + 5$$
$$= 48 - 40 + 4 - 6 + 5$$
$$=11$$
$$Q(2) = (((3(2) - 5)2+1)2- 3) 2 + 5$$
$$=((3(2) + 1)2 - 3)2 +5$$
$$=((3(2) - 3)2 + 5$$
$$= (3)2+5$$
$$= 11$$
Nested form of R(x)
$$R(x) = x^{5} - 2x^{4} + 3x^{3} - 2x^{2} + 3x +4$$
$$R(x) = (x^{4} - 2x^{3} + 3x^{2} - 2x + 3)x +4$$
$$= ((x^{3} - 2x^{2} + 3x - 2)x + 3)x +4$$
$$= (((x^{2} - 2x + 3)x - 2)x + 3)x +4$$
$$= ((((x - 2)x + 3)x - 2)x + 3)x +4$$
$$R(x) = ((((x - 2)x + 3)x - 2)x + 3)x +4$$
$$R(3) = ((((3 - 2)3 + 3)3 - 2)3 + 3)3 + 4$$
$$=167$$