Question

Find all the second-order partial derivatives of the functions f(x,y)=\sin xy

Derivatives
ANSWERED
asked 2021-06-06
Find all the second-order partial derivatives of the functions \(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{x}}}{y}\)

Answers (1)

2021-06-07

Step 1
the given function:
\(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{x}}}{y}\)
we have to find the second order partial derivatives of the given function:
i.e. \(\displaystyle{f}_{{xx}},{f}_{{{y}{y}}},{f}_{{{x}{y}}},{f}_{{{y}{x}}}\).
Step 2
here, \(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{\left({x}{y}\right)}}}\)
firstly , we find \(\displaystyle{f}_{{{x}}},{f}_{{{y}}}\)
\(\displaystyle{f}_{{{x}}}={\frac{{\partial{f}}}{{\partial{x}}}}={y}{\cos{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}}}={\frac{{\partial{f}}}{{\partial{y}}}}={x}{\cos{{x}}}{y}\)
now we have to find \(\displaystyle{f}_{{xx}},{f}_{{{y}{y}}}\)
\(\displaystyle{f}_{{xx}}={\frac{{\partial{f}_{{{x}}}}}{{\partial{x}}}}=-{y}^{{{2}}}{\sin{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}{y}}}={\frac{{\partial{f}_{{{y}}}}}{{\partial{f}_{{{y}}}}}}=-{x}^{{{2}}}{\sin{{x}}}{y}\)
now we have to find \(\displaystyle{f}_{{{x}{y}}},{f}_{{{y}{x}}}\)
\(\displaystyle{f}_{{{x}{y}}}={\frac{{\partial{f}_{{{x}}}}}{{\partial{y}}}}=-{y}{x}{\sin{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}{x}}}={\frac{{\partial{f}_{{{y}}}}}{{\partial{x}}}}=-{x}{y}{\sin{{x}}}{y}\)
this is the required answer.

0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-12
Compute all of the second-order partial derivatives for the functions and show that the mixed partial derivatives are equal.
\(\displaystyle{f{{\left({x},{y}\right)}}}={e}^{{{x}}}{\sin{{\left({x}{y}\right)}}}\)
asked 2021-05-18
Find all the second-order partial derivatives of the functions \(\displaystyle{g{{\left({x},{y}\right)}}}={{\cos{{x}}}^{{{2}}}-}{\sin{{3}}}{y}\)
asked 2021-05-09
Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{4}}}{y}-{2}{x}^{{{5}}}{y}^{{{2}}}\)
\(\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{x}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({x},{y}\right)}}=\)
asked 2021-06-08
Find all the second partial derivatives.
\(f(x,y) = sin^2(mx+ny)\)
asked 2021-03-30
Find the four second partial derivatives of the following functions.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{2}}}{\sin{{y}}}\)
asked 2021-05-30
Find all the second partial derivatives
\(v=\frac{xy}{x-y}\)
asked 2021-06-04
Find the four second partial derivatives of the following functions.
\(\displaystyle{h}{\left({x},{y}\right)}={x}^{{{3}}}+{x}{y}^{{{2}}}+{1}\)
asked 2021-05-25
Find all second-order partial derivatives for the following.
\(\displaystyle{k}{\left({x},{y}\right)}={\frac{{-{7}{x}}}{{{2}{x}+{3}{y}}}}\)
asked 2021-03-23
Find the first partial derivatives of the following functions.
\(\displaystyle{g{{\left({x},{y}\right)}}}={y}{{\sin}^{{-{1}}}\sqrt{{{x}{y}}}}\)
asked 2021-05-07
Find the four second-order partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={3}{x}^{{{7}}}{y}-{4}{x}{y}+{8}{y}\)
\(\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=\)
...