Find all the second-order partial derivatives of the functions f(x,y)=\sin xy

coexpennan 2021-06-06 Answered
Find all the second-order partial derivatives of the functions \(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{x}}}{y}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Solve your problem for the price of one coffee

  • Available 24/7
  • Math expert for every subject
  • Pay only if we can solve it
Ask Question

Expert Answer

Neelam Wainwright
Answered 2021-06-07 Author has 15209 answers

Step 1
the given function:
\(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{x}}}{y}\)
we have to find the second order partial derivatives of the given function:
i.e. \(\displaystyle{f}_{{xx}},{f}_{{{y}{y}}},{f}_{{{x}{y}}},{f}_{{{y}{x}}}\).
Step 2
here, \(\displaystyle{f{{\left({x},{y}\right)}}}={\sin{{\left({x}{y}\right)}}}\)
firstly , we find \(\displaystyle{f}_{{{x}}},{f}_{{{y}}}\)
\(\displaystyle{f}_{{{x}}}={\frac{{\partial{f}}}{{\partial{x}}}}={y}{\cos{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}}}={\frac{{\partial{f}}}{{\partial{y}}}}={x}{\cos{{x}}}{y}\)
now we have to find \(\displaystyle{f}_{{xx}},{f}_{{{y}{y}}}\)
\(\displaystyle{f}_{{xx}}={\frac{{\partial{f}_{{{x}}}}}{{\partial{x}}}}=-{y}^{{{2}}}{\sin{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}{y}}}={\frac{{\partial{f}_{{{y}}}}}{{\partial{f}_{{{y}}}}}}=-{x}^{{{2}}}{\sin{{x}}}{y}\)
now we have to find \(\displaystyle{f}_{{{x}{y}}},{f}_{{{y}{x}}}\)
\(\displaystyle{f}_{{{x}{y}}}={\frac{{\partial{f}_{{{x}}}}}{{\partial{y}}}}=-{y}{x}{\sin{{x}}}{y}\ {\quad\text{and}\quad}\ {f}_{{{y}{x}}}={\frac{{\partial{f}_{{{y}}}}}{{\partial{x}}}}=-{x}{y}{\sin{{x}}}{y}\)
this is the required answer.

Not exactly what you’re looking for?
Ask My Question
43
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-05-12
Compute all of the second-order partial derivatives for the functions and show that the mixed partial derivatives are equal.
\(\displaystyle{f{{\left({x},{y}\right)}}}={e}^{{{x}}}{\sin{{\left({x}{y}\right)}}}\)
asked 2021-05-18
Find all the second-order partial derivatives of the functions \(\displaystyle{g{{\left({x},{y}\right)}}}={{\cos{{x}}}^{{{2}}}-}{\sin{{3}}}{y}\)
asked 2021-05-09
Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{4}}}{y}-{2}{x}^{{{5}}}{y}^{{{2}}}\)
\(\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{x}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({x},{y}\right)}}=\)
asked 2021-11-19

Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{6}}}{y}-{2}{x}^{{{3}}}{y}^{{{2}}}\)
\(\displaystyle{{f}_{{xx}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{x}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({x},{y}\right)}}=\)

asked 2021-12-30
Find all the second partial derivatives. \(\displaystyle{v}={\frac{{{x}{y}}}{{{x}-{y}}}}\)
asked 2021-05-30
Find all the second partial derivatives
\(v=\frac{xy}{x-y}\)
asked 2021-12-09
Calculate all four second-order partial derivatives of \(\displaystyle{f{{\left({x},{y}\right)}}}={\left({5}{x}+{4}{y}\right)}{e}^{{{y}}}\)
...