Question

Use the theorems on derivatives to find the derivatives of the following function: f(x)=3x^{5}-2x^{4}-5x+7+4x^{-2}

Derivatives
ANSWERED
asked 2021-05-04
Use the theorems on derivatives to find the derivatives of the following function:
\(\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{{5}}}-{2}{x}^{{{4}}}-{5}{x}+{7}+{4}{x}^{{-{2}}}\)

Answers (1)

2021-05-05
Step 1
There are two operations addition and substraction in the given function which is a polynomial. We use sum/difference rule of differentiation, \(\displaystyle{\left({f}\pm{g}\right)}'={f}'\pm{g}'\)
Also we know that the derivative of \(\displaystyle{x}^{{{a}}}\ {i}{s}\ {a}{x}^{{{a}-{1}}}\).
Derivative of a constant is always zero.
Step 2
Given
\(\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{{5}}}-{2}{x}^{{{4}}}-{5}{x}+{7}+{4}{x}^{{-{2}}}\)
\(\displaystyle{f}'{\left({x}\right)}={\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({3}{x}^{{{5}}}\right)}-{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({2}{x}^{{{4}}}\right)}-{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({5}{x}\right)}+{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({7}\right)}+{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\left({4}{x}^{{-{2}}}\right)}\)
\(\displaystyle={15}{x}^{{{4}}}-{8}{x}^{{{3}}}-{5}+{0}-{8}{x}^{{{3}}}\)
Step 3
Therefore the derivative is given as,
\(\displaystyle{f}'{\left({x}\right)}={15}{x}^{{{4}}}-{8}{x}^{{{3}}}-{\frac{{{8}}}{{{x}^{{{3}}}}}}-{5}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-01
Use the theorems on derivatives to find the derivatives of the following function:
\(\displaystyle{f{{\left({x}\right)}}}={\left({5}{x}^{{{3}}}+{8}{x}^{{{2}}}-{4}\right)}^{{{4}}}{\left({8}{x}^{{{4}}}-{2}{x}^{{{3}}}-{7}\right)}\)
asked 2021-06-02
Evaluate the derivatives of the given function for the given value of x.
\(\displaystyle{y}{''}={\left({4}{x}^{{{2}}}-{5}{x}+{4}\right)}{\left({3}-{x}-{2}{x}^{{{2}}}\right)},{x}={5}\)
asked 2021-05-13
Find the derivative \(y=\frac{\ln x}{x^6}\)
\(y=e^{x^5}\ln x\)
Find the indicated derivative of the function.
\(\frac{d^4 y}{dx^4} \text{ of } y=2x^5-3x^2-5x+1\)
asked 2021-03-22
Find all the antiderivatives of the following function. Check your work by taking derivatives.
\(\displaystyle{f{{\left({x}\right)}}}={5}{x}^{{{4}}}\)
asked 2021-05-28
Find the derivatives of all of the function.
\(\displaystyle{y}={\frac{{{4}}}{{{3}}}}{x}^{{{3}}}+{\frac{{{7}}}{{{2}}}}{x}^{{{2}}}+{4}{x}+{17}\)
asked 2021-05-03
Find the first partial derivatives of the following functions.
\(\displaystyle{f{{\left({x},{y}\right)}}}={4}{x}^{{{3}}}{y}^{{{2}}}+{3}{x}^{{{2}}}{y}^{{{3}}}+{10}\)
asked 2021-02-24
\(\displaystyle{f{{\left({x}\right)}}}={\left({8}{x}-{1}\right)}{\left({x}^{{{2}}}+{4}{x}+{7}\right)}{\left({x}^{{{3}}}-{5}\right)}\)
Find the derivatives.
asked 2021-05-09
Find all the second partial derivatives.
\(\displaystyle{f{{\left({x},{y}\right)}}}={x}^{{{4}}}{y}-{2}{x}^{{{5}}}{y}^{{{2}}}\)
\(\displaystyle{{f}_{{\times}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{x}{y}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{x}}}{\left({x},{y}\right)}}=\)
\(\displaystyle{{f}_{{{y}{y}}}{\left({x},{y}\right)}}=\)
asked 2021-02-22
Find all first partial derivatives of the following function.
\(\displaystyle{f{{\left({x},{y}\right)}}}={\left({4}{x}-{y}^{{{2}}}\right)}^{{{\frac{{{3}}}{{{2}}}}}}\)
asked 2021-02-16
Find the derivatives.
\(\displaystyle{f{{\left({x}\right)}}}={\frac{{{3}{x}^{{{3}}}-{4}}}{{{2}{x}^{{{2}}}+{3}}}}\)
...