Question

Find all derivatives of the function y=\frac{1}{2x-3}

Derivatives
ANSWERED
asked 2021-06-07
Find all derivatives of the function \(\displaystyle{y}={\frac{{{1}}}{{{2}{x}-{3}}}}\)

Answers (1)

2021-06-08
Step 1
We find first few derivatives using the power rule and chain rule
\(\displaystyle{y}={\frac{{{1}}}{{{2}{x}-{3}}}}={\left({2}{x}-{3}\right)}^{{-{1}}}\)
\(\displaystyle{y}^{{{\left({1}\right)}}}=-{1}{\left({2}{x}-{3}\right)}^{{-{2}}}{\left({2}\right)}=-{2}{\left({2}{x}-{3}\right)}^{{-{2}}}={\left(-{1}\right)}{\left({2}\right)}{\left({1}!\right)}{\left({2}{x}-{3}\right)}^{{-{2}}}\)
\(\displaystyle{y}^{{{\left({2}\right)}}}={4}{\left({2}{x}-{3}\right)}^{{-{3}}}{\left({2}\right)}={8}{\left({2}{x}-{3}\right)}^{{-{3}}}={\left(-{1}\right)}^{{{2}}}{\left({2}\right)}{\left({2}!\right)}{\left({2}{x}-{3}\right)}^{{-{3}}}\)
\(\displaystyle{y}^{{{\left({3}\right)}}}=-{12}{\left({2}{x}-{3}\right)}^{{-{3}}}{\left({2}\right)}=-{24}{\left({2}{x}-{3}\right)}^{{-{4}}}={\left(-{1}\right)}^{{{3}}}{\left({2}\right)}{\left({3}!\right)}{\left({2}{x}-{3}\right)}^{{-{4}}}\)
\(\displaystyle{y}^{{{\left({4}\right)}}}={36}{\left({2}{x}-{3}\right)}^{{-{3}}}{\left({2}\right)}={72}{\left({2}{x}-{3}\right)}^{{-{5}}}={\left(-{1}\right)}^{{{4}}}{\left({2}\right)}{\left({4}!\right)}{\left({2}{x}-{3}\right)}^{{-{5}}}\)
Step 2
Then we find a pattern for integer n
\(\displaystyle{y}^{{{\left({n}\right)}}}={\left(-{1}\right)}^{{{n}}}{\left({2}\right)}{\left({n}!\right)}{\left({2}{x}-{3}\right)}^{{-{n}-{1}}}\)
Answer: \(\displaystyle{y}^{{{\left({n}\right)}}}={\left(-{1}\right)}^{{{n}}}{\left({2}\right)}{\left({n}!\right)}{\left({2}{x}-{3}\right)}^{{-{n}-{1}}}\)
0
 
Best answer

expert advice

Need a better answer?
...