Question

Solve differential equationy'-3x^2y= e^(x^3)

First order differential equations
ANSWERED
asked 2021-02-21

Solve differential equation \(\displaystyle{y}'-{3}{x}^{2}{y}={e}^{{{x}^{3}}}\)

Answers (1)

2021-02-22

\(y'-3x^2y= e^(x^3)\)
\(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}-{3}{x}^{2}{y}={e}^{{{x}^{3}}}\)
\(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}+{P}{y}={Q}\)
\(P= -3x^2\), \(\displaystyle{Q}={e}^{{{x}^{3}}}\)
\(\displaystyle{I}.{F}.={e}^{{\int{P}{\left.{d}{x}\right.}}}\)
\(\displaystyle={e}^{{\int-{3}\frac{{x}^{3}}{{3}}}}\)
\(\displaystyle={e}^{{-{x}^{3}}}\)
\(\displaystyle=\frac{1}{{e}^{{{x}^{3}}}}\)
\(\displaystyle{y}{\left({I}.{F}.\right)}=\int{Q}{\left({I}.{F}.\right)}{\left.{d}{x}\right.}+{C}\)
\(\displaystyle{y}\frac{1}{{e}^{{{x}^{3}}}}=\int{e}^{{{x}^{3}}}\frac{1}{{e}^{{{x}^{3}}}}{\left.{d}{x}\right.}+{C}\)

0
 
Best answer

expert advice

Need a better answer?
...