\(\displaystyle{x}\equiv{6}\pm{o}{d}{8}\)

\(\displaystyle{x}\equiv{17}\pm{o}{d}{\left\lbrace{25}\right\rbrace}\)

We see that the solution x is unique modulo 25.8=200.

Now, 25(1)-8(3)=1.

Thus,

x=6.25(1)-17.8(3)

x=150-408

x=-258

\(\displaystyle{x}=-{58}\pm{o}{d}{\left\lbrace{200}\right\rbrace}\)

\(\displaystyle{x}={142}\pm{o}{d}{\left\lbrace{40}\right\rbrace}\)

Therefore, x=142.

\(\displaystyle{x}\equiv{17}\pm{o}{d}{\left\lbrace{25}\right\rbrace}\)

We see that the solution x is unique modulo 25.8=200.

Now, 25(1)-8(3)=1.

Thus,

x=6.25(1)-17.8(3)

x=150-408

x=-258

\(\displaystyle{x}=-{58}\pm{o}{d}{\left\lbrace{200}\right\rbrace}\)

\(\displaystyle{x}={142}\pm{o}{d}{\left\lbrace{40}\right\rbrace}\)

Therefore, x=142.