Question

Find the indicated derivatives. \frac{ds}{dt} if s=\frac{t}{2t+1}

Derivatives
ANSWERED
asked 2021-04-20
Find the indicated derivatives. \(\displaystyle{\frac{{{d}{s}}}{{{\left.{d}{t}\right.}}}}{\quad\text{if}\quad}{s}={\frac{{{t}}}{{{2}{t}+{1}}}}\)

Answers (1)

2021-04-22
Step 1
The given function is \(\displaystyle{s}={\frac{{{t}}}{{{2}{t}+{1}}}}\)
Step 2
Find the derivative \(\displaystyle{\frac{{{d}{s}}}{{{\left.{d}{t}\right.}}}}\)
\(\displaystyle{\frac{{{d}{s}}}{{{\left.{d}{t}\right.}}}}={\frac{{{d}}}{{{\left.{d}{t}\right.}}}}{\left({\frac{{{t}}}{{{2}{t}+{1}}}}\right)}\)
\(\displaystyle={\frac{{{\left({2}{t}+{1}\right)}{\frac{{{d}}}{{{\left.{d}{t}\right.}}}}{\left({t}\right)}-{t}{\frac{{{d}}}{{{\left.{d}{t}\right.}}}}{\left({2}{t}+{1}\right)}}}{{{\left({2}{t}+{1}\right)}^{{{2}}}}}}\)
\(\displaystyle={\frac{{{\left({2}{t}+{1}\right)}{\left({1}\right)}-{t}{\left({2}\right)}}}{{{\left({2}{t}+{1}\right)}^{{{2}}}}}}\)
\(\displaystyle={\frac{{{2}{t}+{1}-{2}{t}}}{{{\left({2}{t}+{1}\right)}^{{{2}}}}}}\)
\(\displaystyle={\frac{{{1}}}{{{\left({2}{t}+{1}\right)}^{{{2}}}}}}\)
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...