If A=begin{bmatrix}1 & 1 3 & 4 end{bmatrix} , B=begin{bmatrix}2 1 end{bmatrix} ,C=begin{bmatrix}-7 & 1 0 & 4 end{bmatrix},D=begin{bmatrix}3 & 2 & 1 end{bmatrix} text{ and } E=begin{bmatrix}2 & 3&4 1 & 2&-1 end{bmatrix} Find , if possible, a) A+B , C-A and D-E b)AB, BA , CA , AC , DA , DB , BD , EB , BE and AE c) 7C , -3D and KE

If A=begin{bmatrix}1 & 1 3 & 4 end{bmatrix} , B=begin{bmatrix}2 1 end{bmatrix} ,C=begin{bmatrix}-7 & 1 0 & 4 end{bmatrix},D=begin{bmatrix}3 & 2 & 1 end{bmatrix} text{ and } E=begin{bmatrix}2 & 3&4 1 & 2&-1 end{bmatrix} Find , if possible, a) A+B , C-A and D-E b)AB, BA , CA , AC , DA , DB , BD , EB , BE and AE c) 7C , -3D and KE

Question
Matrices
asked 2020-10-21
If \(A=\begin{bmatrix}1 & 1 \\3 & 4 \end{bmatrix} , B=\begin{bmatrix}2 \\1 \end{bmatrix} ,C=\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix},D=\begin{bmatrix}3 & 2 & 1 \end{bmatrix} \text{ and } E=\begin{bmatrix}2 & 3&4 \\1 & 2&-1 \end{bmatrix}\)
Find , if possible,
a) A+B , C-A and D-E b)AB, BA , CA , AC , DA , DB , BD , EB , BE and AE c) 7C , -3D and KE

Answers (1)

2020-10-22
Step 1
We can add and subtract matrices only which of them have same order.
For multiplication of two matrices it is necessary that no. of columns of first matrix must be equal to no of rows in second matrix.
Step 2
Here,
\(A=\begin{bmatrix}1 & 1 \\3 & 4 \end{bmatrix} , B=\begin{bmatrix}2 \\1 \end{bmatrix} ,C=\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix},D=\begin{bmatrix}3 & 2 & 1 \end{bmatrix} \text{ and } E=\begin{bmatrix}2 & 3&4 \\1 & 2&-1 \end{bmatrix}\)
a) A+B , order of A is \(2 \times 2 \neq\) order of \(B (2 \times 1)\)
So, Not possible
C-A
\(C-A=\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix}-\begin{bmatrix}1 & 1 \\3 & 4 \end{bmatrix}=\begin{bmatrix}-7-1 & 1-1 \\0-3 & 4-4 \end{bmatrix}=\begin{bmatrix}-8 & 0 \\-3 & 0 \end{bmatrix}\)
\(C-A=\begin{bmatrix}-8 & 0 \\-3 & 0 \end{bmatrix}\)
D-E
D-E have different orders
So,not possible
b) AB
\(AB=\begin{bmatrix}1 & 1 \\3 & 4 \end{bmatrix}\begin{bmatrix}2 \\1\end{bmatrix}=\begin{bmatrix}2+1 \\6+4\end{bmatrix}=\begin{bmatrix}3 \\10 \end{bmatrix}\)
Hence
\(AB=\begin{bmatrix}3 \\10 \end{bmatrix}\)
\(BA \text{ here } [B]_{2 \times 1} [A]_{2 \times 2}\)
number of columns of B \(\neq\) number of row in A
So,not possible
CA
\(CA=\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix}\begin{bmatrix}1 & 1 \\3& 4 \end{bmatrix}=\begin{bmatrix}-7+3 & -7+4 \\0+12 & 0+16 \end{bmatrix}=\begin{bmatrix}-4 & -3 \\12 & 16 \end{bmatrix}\)
Hence
\(CA=\begin{bmatrix}-4 & -3 \\12 & 16 \end{bmatrix}\)
AC
\(AC=\begin{bmatrix}1 & 1 \\3& 4 \end{bmatrix}\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix}=\begin{bmatrix}-7 & 1+4 \\-21 & 3+16 \end{bmatrix}=\begin{bmatrix}-7 & 5 \\-21 & 19 \end{bmatrix}\)
Hence,
\(AC=\begin{bmatrix}-7 & 5 \\-21 & 19 \end{bmatrix}\)
DA
\([D]_{1 \times 3}[A]_{2 \times 2}\)
Number columns in [D] \(\neq\) number rows in [A]
So,not possible DB . Not possible BD. Not possible
\(EB. [E]_{2 \times 3} [B]_{2 \times 1}\)
Not possible
BE
\([B]_{2 \times 1}[E]_{2 \times 3}\)
Not possible
AE
\(AE=\begin{bmatrix}1 & 1 \\3& 4 \end{bmatrix}\begin{bmatrix}2 & 3&4 \\1 & 2&-1 \end{bmatrix}=\)
\(=\begin{bmatrix}2+1 & 3+2&4-1 \\6+4 & 9+8&12-4 \end{bmatrix}=\begin{bmatrix}3 & 5&3 \\10 & 17&8 \end{bmatrix}\)
Hence,
\(AE=\begin{bmatrix}3 & 5&3 \\10 & 17&8 \end{bmatrix}\)
(c)\(7C=7\begin{bmatrix}-7 & 1 \\0 & 4 \end{bmatrix}=\begin{bmatrix}-49 & 7 \\0 & 28 \end{bmatrix}\)
\(-3D=-3\begin{bmatrix}3 & 2 & 1 \end{bmatrix}=\begin{bmatrix}-9 & -6 & -3 \end{bmatrix}\)
\(KE=K\begin{bmatrix}2 & 3&4 \\1&2&-1 \end{bmatrix}=\begin{bmatrix}2K & 3K&4K \\K&2K&-K \end{bmatrix}\)
0

Relevant Questions

asked 2021-02-05
\(A=\begin{bmatrix}2& 1&1 \\-1 & -1&4 \end{bmatrix} B=\begin{bmatrix}0& 2 \\-4 & 1\\2 & -3 \end{bmatrix} C=\begin{bmatrix}6& -1 \\3 & 0\\-2 & 5 \end{bmatrix} D=\begin{bmatrix}2& -3&4 \\-3 & 1&-2 \end{bmatrix}\)
a)\(A-3D\)
b)\(B+\frac{1}{2}\)
c) \(C+ \frac{1}{2}B\)
(a),(b),(c) need to be solved
asked 2020-10-25

Solve for X in the equation, given
\(3X + 2A = B\)
\(A=\begin{bmatrix}-4 & 0 \\1 & -5\\-3&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 2 \\ -2 & 1 \\ 4&4 \end{bmatrix}\)

asked 2021-03-09
Use the graphing calculator to solve if possible
A=\begin{bmatrix}1 & 0&5 \\1 & -5&7\\0&3&-4 \end{bmatrix}\\ B=\begin{bmatrix}3 & -5&3 \\2&3&1\\4&1&-3\end{bmatrix}\\ C=\begin{bmatrix}5 & 2&3 \\2& -1&0 \end{bmatrix}\\ D=\begin{bmatrix}5 \\-3\\4 \end{bmatrix}
Find the value in row 2 column 3 of AB-3B
asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
asked 2020-11-30

Let M be the vector space of \(2 \times 2\) real-valued matrices.
\(M=\begin{bmatrix}a & b \\c & d \end{bmatrix}\)
and define \(M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}\) Characterize the matrices M such that \(M^{\#}=M^{-1}\)

asked 2021-02-05
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA. \(A=\begin{bmatrix}1 & 2 &3&4\end{bmatrix} , B=\begin{bmatrix}1 \\ 2 \\ 3 \\ 4 \end{bmatrix}\)
asked 2021-03-02
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
\(A=\begin{bmatrix}3 & -2 \\1 & 5\end{bmatrix} , B=\begin{bmatrix}0 & 0 \\5 & -6 \end{bmatrix}\)
asked 2021-02-25
Find if possible the matrices:
a) AB b) BA.
\(A=\begin{bmatrix}3 & -2 \\ 1 & 5 \end{bmatrix} , B=\begin{bmatrix}0 & 0 \\ 5 & -6 \end{bmatrix}\)
asked 2021-02-23
Boom AB is held in the position shown by three cables. Knowing that the tensions in calbe AC and AC are 900lb and 1200lb,respectively, determne (a) the tension in cable AE if the resultant of thettensions exerted at point A of the boom must be directed along AB, (b) the corresponding magnitude o the resultant.
asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA.
A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}
...