Magnitude of \(\displaystyle{r}=\sqrt{{{{r}_{{x}}^{{2}}}+{{r}_{{y}}^{{2}}}}}={\left[{\left({142}+{\left(-{95}\right)}{2}\right]}^{{{\frac{{{1}}}{{{2}}}}}}={96.02}{m}\right.}\)

Direction Angle \(\displaystyle={{\tan}^{{-{1}}}{\frac{{{r}_{{y}}}}{{{r}_{{x}}}}}}={{\tan}^{{-{1}}}{\frac{{-{95}}}{{{14}}}}}=-{81.61}\)

Direction Angle \(\displaystyle={{\tan}^{{-{1}}}{\frac{{{r}_{{y}}}}{{{r}_{{x}}}}}}={{\tan}^{{-{1}}}{\frac{{-{95}}}{{{14}}}}}=-{81.61}\)