# Solve the differential equation x dy/dx= y+xe^(y/x), y=vx Question
First order differential equations Solve the differential equation $$x dy/dx= y+xe^(y/x)$$, y=vx 2021-02-25
Divide both sides by x and further simplify it
$$x/x dy/dx= y/x+(xe^(y/x))/x$$
$$dy/dx= y/x+e^(y/x)$$
Substitute $$y=xv => y/x=v$$
Differentiate with respect to x
$$dy/dx= v+x (dv)/dx$$
Hence, $$v+x (dv)/dx= v+e^v$$
Substract v from both sides and further simplify it
$$v+x (dv)/dx-v= v+e^v-v$$
$$x (dv)/dx= e^v$$
$$(dv)/e^v= dx/x$$
$$e^-v dv= dx/x$$
Integrate both sides
$$int e^v dv= int dx/x+c$$
$$-e^v= log x+log c$$
$$-e^v= log(xc)$$
$$e^v= -log(xc)$$
Taking log both sides
$$-v= log(-log(xc))$$
$$v= -log(-log(xc))$$ Substitute $$v= y/x$$
$$y/x= -log(-log(xc))$$
$$y= -x log(-log(xc))$$

### Relevant Questions Solve the differential equation $$x dy/dx-y= x^2lnx$$ Solve differential equation $$\displaystyle{y}{\left({2}{x}-{2}+{x}{y}+{1}\right)}{\left.{d}{x}\right.}+{\left({x}-{y}\right)}{\left.{d}{y}\right.}={0}$$ Solve differential equation $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{x}-{y}-{1}}}{{{x}+{y}+{3}}}}$$ Solve differential equation $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\left({x}+{y}+{1}\right)}^{{2}}-{\left({x}+{y}-{1}\right)}^{{2}}$$ Solve differential equation $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}-{\left({\cot{{x}}}\right)}{y}={{\sin}^{{3}}{x}}$$ Solve differential equation $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{x}}}{{{y}}}},\ {y}{\left({0}\right)}=-{8}$$ Solve differential equation $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}-{\left({\cot{{x}}}\right)}{y}={{\sin}^{{3}}{x}}$$ Solve differential equation $$\displaystyle{2}{x}{y}-{9}{x}^{{2}}+{\left({2}{y}+{x}^{{2}}+{1}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={0},\ {y}{\left({0}\right)}=-{3}$$ Solve differential equation $$dy/dx= x/(ye^(x+y^2))$$ Solve differential equation $$dx/dy+x/y= 1/(sqrt(1+y^2))$$