i just edited the question alittle bit, maybe this time itwill be clearer

Question

asked 2021-05-14

Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.

\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)

a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)

MPa

State which estimator you used.

\(x\)

\(p?\)

\(\frac{s}{x}\)

\(s\)

\(\tilde{\chi}\)

b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).

MPa

State which estimator you used.

\(s\)

\(x\)

\(p?\)

\(\tilde{\chi}\)

\(\frac{s}{x}\)

c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)

MPa

Interpret this point estimate.

This estimate describes the linearity of the data.

This estimate describes the bias of the data.

This estimate describes the spread of the data.

This estimate describes the center of the data.

Which estimator did you use?

\(\tilde{\chi}\)

\(x\)

\(s\)

\(\frac{s}{x}\)

\(p?\)

d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)

e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)

State which estimator you used.

\(p?\)

\(\tilde{\chi}\)

\(s\)

\(\frac{s}{x}\)

\(x\)

\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)

a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)

MPa

State which estimator you used.

\(x\)

\(p?\)

\(\frac{s}{x}\)

\(s\)

\(\tilde{\chi}\)

b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).

MPa

State which estimator you used.

\(s\)

\(x\)

\(p?\)

\(\tilde{\chi}\)

\(\frac{s}{x}\)

c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)

MPa

Interpret this point estimate.

This estimate describes the linearity of the data.

This estimate describes the bias of the data.

This estimate describes the spread of the data.

This estimate describes the center of the data.

Which estimator did you use?

\(\tilde{\chi}\)

\(x\)

\(s\)

\(\frac{s}{x}\)

\(p?\)

d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)

e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)

State which estimator you used.

\(p?\)

\(\tilde{\chi}\)

\(s\)

\(\frac{s}{x}\)

\(x\)

asked 2021-04-11

The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrust: one positive and one negative. The positive contribution comes from air pushed backward, away from the propeller (so dm/dt<0), at a speed vex relative to the propeller. The negative contribution comes from this same quantity of air flowing into the front of the propeller (so dm/dt>0) at speed v, equal to the speed of the airplane through the air.

For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.

For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.

asked 2021-05-05

If John, Trey, and Miles want to know how’ |
many two-letter secret codes there are that don't
have a repeated letter. For example, they want to
: count BA and AB, but they don't want to count“ doubles such as ZZ or XX. Jobn says there are
26 + 25 because you don’t want to use the same
letter twice; that’s why the second number is 25.

‘Trey says he thinks it should be times, not plus: 26-25, Miles says the number is 26-26 ~ 26 because you need to take away the double letters. Discuss the boys’ ideas, Which answers are correct, which are not, and why? Explain your answers clearly and thoroughly, drawing ‘on this section’s definition of multiptication.. -

‘Trey says he thinks it should be times, not plus: 26-25, Miles says the number is 26-26 ~ 26 because you need to take away the double letters. Discuss the boys’ ideas, Which answers are correct, which are not, and why? Explain your answers clearly and thoroughly, drawing ‘on this section’s definition of multiptication.. -

asked 2021-05-22

Sheila is in Ms. Cai's class . She noticed that the graph of the perimeter for the "dented square" in problem 3-61 was a line . "I wonder what the graph of its area looks like ," she said to her teammates .

a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.

b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.

c. Explain to Sheila what the graph of the area looks like.

d. Use the graph to approximate xx when the area of the shape is 20 square units.

a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.

b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.

c. Explain to Sheila what the graph of the area looks like.

d. Use the graph to approximate xx when the area of the shape is 20 square units.