The problem is asking for centripetal acceleration, given by the equation:

\(\displaystyle{a}_{{{c}}}=\frac{{v}^{{{2}}}}{{r}}\), wherev is velocity and r is radius.

First we need to be in the correct units:

1 mi =1609.344 m

1 hr = 3600 s

60mph = (60)(1609.344)/3600 = 26.82m/s

r = .5(2) = 1 ft

1 ft = 0.3048m

\(\displaystyle{a}_{{{c}}}=\frac{{v}^{{{2}}}}{{r}}=\frac{{26.82}^{{{2}}}}{{.3048}}={2360.4}\frac{{m}}{{s}^{{{2}}}}\)

\(\displaystyle{a}_{{{c}}}=\frac{{v}^{{{2}}}}{{r}}\), wherev is velocity and r is radius.

First we need to be in the correct units:

1 mi =1609.344 m

1 hr = 3600 s

60mph = (60)(1609.344)/3600 = 26.82m/s

r = .5(2) = 1 ft

1 ft = 0.3048m

\(\displaystyle{a}_{{{c}}}=\frac{{v}^{{{2}}}}{{r}}=\frac{{26.82}^{{{2}}}}{{.3048}}={2360.4}\frac{{m}}{{s}^{{{2}}}}\)