Question

The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrus

Other
ANSWERED
asked 2021-04-11
The equation F=−vex(dm/dt) for the thrust on a rocket, can also be applied to an airplane propeller. In fact, there are two contributions to the thrust: one positive and one negative. The positive contribution comes from air pushed backward, away from the propeller (so dm/dt<0), at a speed vex relative to the propeller. The negative contribution comes from this same quantity of air flowing into the front of the propeller (so dm/dt>0) at speed v, equal to the speed of the airplane through the air.
For a Cessna 182 (a single-engine airplane) flying at 130 km/h, 150 kg of air flows through the propeller each second and the propeller develops a net thrust of 1300 N. Determine the speed increase (in km/h) that the propeller imparts to the air.

Expert Answers (1)

2021-04-13
from the given equation of thrust F=v dm/dt
given dm/dt=150kg/s
net thrust F=1300 N
so the speed v=F/dm/dt
v=1300/150=8.66 m/s
now it is converted in kmph
speed v=31.2 kmph
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-04-21
The crane shown in the drawing is lifting a 182-kg crate upward with an acceleration of \(\displaystyle{1.5}\frac{{m}}{{s}^{{2}}}\). The cable from the crate passes over a solid cylindrical pulley at the top of the boom. The pulley has a mass of 130 kg. The cable is then wound ontoa hollow cylindrical drum that is mounted on the deck of the crane.The mass of the drum is 150 kg, and its radius is 0.76 m. The engine applies a counter clockwise torque to the drum in order towind up the cable. What is the magnitude of this torque? Ignore the mass of the cable.
asked 2021-05-09
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)
where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.
Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.
Part B:
A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.
asked 2021-02-19
An airplane propeller is 2.08 m in length (from tip to tip) and has a mass of 117 kg. When the airpline's engine is first started, it applies a constant torque of \(\displaystyle{1950}\ {N}\cdot{m}\) to the propeller, which starts from rest.
a) What is the angular acceleration of the propeller? Model the propeller as a slender rod.
b) What is the propeller's angular speed after making 5.00 revolutions?
c) How much work is done by the engine during the first 5.00 revolutions?
e) What is the instantaneous power output of the motor at the instant that the propeller has turne through 5.00 revolutions?
asked 2021-05-20
Assume that a ball of charged particles has a uniformly distributednegative charge density except for a narrow radial tunnel throughits center, from the surface on one side to the surface on the opposite side. Also assume that we can position a proton any where along the tunnel or outside the ball. Let \(\displaystyle{F}_{{R}}\) be the magnitude of the electrostatic force on the proton when it islocated at the ball's surface, at radius R. As a multiple ofR, how far from the surface is there a point where the forcemagnitude is 0.44FR if we move the proton(a) away from the ball and (b) into the tunnel?
...