A (L=10H) inductor carries a steady current of (\(\displaystyle{I}_{{{r}{m}{s}}}={2}{A}\)).

How can a (\(\displaystyle{V}_{{L}}={100}\) volt) self induced emf bemade to appear in the inductor

Since:

\(\displaystyle{V}_{{L}}={I}_{{{r}{m}{s}}}\cdot{X}_{{L}}\)

\(\displaystyle{V}_{{L}}={I}_{{{r}{m}{s}}}\cdot{\left({2}\cdot?\cdot{f}\cdot{L}\right)}\)

or, \(\displaystyle{f}={\frac{{{V}_{{L}}}}{{{I}_{{{r}{m}{s}}}}}}\cdot{\left({2}\cdot?\cdot{L}\right)}\)

By connecting it to the oscillator having the frequency 'f'.

How can a (\(\displaystyle{V}_{{L}}={100}\) volt) self induced emf bemade to appear in the inductor

Since:

\(\displaystyle{V}_{{L}}={I}_{{{r}{m}{s}}}\cdot{X}_{{L}}\)

\(\displaystyle{V}_{{L}}={I}_{{{r}{m}{s}}}\cdot{\left({2}\cdot?\cdot{f}\cdot{L}\right)}\)

or, \(\displaystyle{f}={\frac{{{V}_{{L}}}}{{{I}_{{{r}{m}{s}}}}}}\cdot{\left({2}\cdot?\cdot{L}\right)}\)

By connecting it to the oscillator having the frequency 'f'.