Water at a pressure of 3.00\times10^5 Pa flows through a horizontal pipe at a speed of 1.00 m/s. the pipe narrows to 1/4 its original diameter. Find the following: A. The flow speed in the narrow section B. the pressure in the narrow section

Water at a pressure of 3.00\times10^5 Pa flows through a horizontal pipe at a speed of 1.00 m/s. the pipe narrows to 1/4 its original diameter. Find the following: A. The flow speed in the narrow section B. the pressure in the narrow section

Question
Other
asked 2021-04-04
Water at a pressure of \(\displaystyle{3.00}\times{10}^{{5}}\) Pa flows through a horizontal pipe at a speed of 1.00 m/s. the pipe narrows to 1/4 its original diameter. Find the following:
A. The flow speed in the narrow section
B. the pressure in the narrow section

Answers (1)

2021-04-06
A) this part can be done on the basis of equation of continuity
AV = constant
A is the area of the cross section \(\displaystyle={d}^{{2}}\)
V is the velocity of the water
\(\displaystyle{{d}_{{1}}^{{2}}}\times{V}_{{1}}={{d}_{{2}}^{{2}}}\times{V}_{{2}}\)
\(\displaystyle{d}_{{1}}={d},{d}_{{2}}={\frac{{{d}}}{{{4}}}};{V}_{{1}}={1}\ \frac{{m}}{{s}};{V}_{{2}}=?\)
plug the values and get the answer for velocity at the other end
B) We can do this part by making use of bernoullis theorem
\(\displaystyle{P}+{\frac{{{1}}}{{{2}}}}{\left(?{{v}_{{1}}^{{2}}}\right)}+{h}?{g}={P}_{{2}}+{\frac{{{1}}}{{{2}}}}{\left(?{{v}_{{2}}^{{2}}}\right)}+{h}?{g}\)
remains constant on both sides
therefore, \(\displaystyle{P}_{{1}}+{\frac{{{1}}}{{{2}}}}{\left(?{{v}_{{1}}^{{2}}}\right)}={P}_{{2}}+{\frac{{{1}}}{{{2}}}}{\left(?{{v}_{{2}}^{{2}}}\right)}\)
\(\displaystyle{P}_{{1}}={3.00}\times{10}^{{5}}\) Pa; \(\displaystyle{P}_{{2}}=?;{V}_{{1}}={1}\ \frac{{m}}{{s}};{V}_{{2}}=\) (get it from A); \(\displaystyle?={1000}{k}\frac{{g}}{{m}^{{3}}}\)
plug the vales and get the answer
0

Relevant Questions

asked 2021-02-18
In an industrial cooling process, water is circulated through a system. If the water is pumped with a speed of 0.45 m/s under a pressure of 400 torr from the first floor through a 6.0-cm diameter pipe, what will be the pressure on the next floor 4.0 m above in a pipe with a diameter of 2.0 cm?
asked 2021-03-22
A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. On the rough section, the coefficient of friction is not constant but starts at .100 at P and increases linerly with distance past P, reaching a value of .600 at 12.5 m past point P. (a) Use the work energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid iff the friciton coefficient didn't increase, but instead had the constant value of .1?
asked 2021-02-03
A 6.0 cm diameter horizontal pipe gradually narrows to 4.0 cm.When water flows through this pipe at a certain rate, the gaugepressure in these two sections is 32.0 k Pa and 24.0 k Pa,respectively. What is the volume rate of flow?
asked 2021-03-24
The flywheel of a punch press has a moment of inertia of \(\displaystyle{16.0}{k}{g}\cdot{m}^{{2}}\) and runs at 300 rev/min. The flywheel supplies all theenergy needed in a quick punching operation.
a)Find the speed in rev/min to which the fly wheel will be reducedby a sudden punching operation requiring 4000J of work.
b)What must the constant power supply to the flywheel (in watts) beto bring it back to it's initial speed in a time of 5.00 s?
asked 2021-03-24
A 2.4-kg object is attached to a horizontal spring of forceconstant k=4.5 kN/m. The spring is stretched 10 cm fromequilibrium and released. Find (a) the frequency of themotion, (b) the period, (c) the amplitude, (d) the maximum speed,and (e) the maximum acceleration. (f) When does the objectfirst reach its equilibrium position? What is itsacceleration at this time?
Two identical blocks placed one on top of the other rest on africtionless horizontal air track. The lower block isattached to a spring of spring constant k= 600 N/m. Whendisplaced slightly from its equilibrium position, the systemoscillates with a frequency of 1.8 Hz. When the amplitude ofoscillation exceeds 5 cm, the upper block starts to slide relativeto the lower one. (a) What are the masses of the twoblocks? (b) What is the coefficient of static frictionbetween the two blocks?
asked 2021-04-15
A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 235 m, and the car completes the turn in 33.0 s. (Enter only the answers in the input boxes separately given.)
(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \(\displaystyle\hat{{{i}}}\) and \(\displaystyle\hat{{{j}}}\).
1. (Enter in box 1) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+{\left({E}{n}{t}{e}{r}\in{b}\otimes{2}\right)}{P}{S}{K}\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)
(b) Determine the car's average speed.
3. ( Enter in box 3) m/s
(c) Determine its average acceleration during the 33.0-s interval.
4. ( Enter in box 4) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+\)
5. ( Enter in box 5) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-04-03
At what angle will the electrons leave the uniform electric field at the end of the parallel plates? Assume the plates are 4.9 cm long, \(\displaystyle{E}={5.0}\times{10}^{{3}}\) and \(\displaystyle{v}_{{0}}={1.00}\times{10}^{{7}}\) m/s. Ignore fringing on the field.
asked 2021-05-08
A high-speed sander has a disk 4.00 cm in radius that rotates about its axis at aconstant rate of 1265 rev/min.Determine
(a) the angular speed of the disk in radians persecond,
rad/s
(b) the linear speed of a point 2.2 cmfrom the disk's center,
m/s
(c) the centripetal acceleration of a point on the rim, and
\(\displaystyle\frac{{m}}{{s}^{{{2}}}}\)
(d) the total distance traveled by a point on the rim in1.96 s.
m
asked 2021-05-10
Hypothetical potential energy curve for aparticle of mass m
If the particle is released from rest at position r0, its speed atposition 2r0, is most nearly
a) \(\displaystyle{\left({\frac{{{8}{U}{o}}}{{{m}}}}\right)}^{{1}}{\left\lbrace/{2}\right\rbrace}\)
b) \(\displaystyle{\left({\frac{{{6}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
c) \(\displaystyle{\left({\frac{{{4}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
d) \(\displaystyle{\left({\frac{{{2}{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
e) \(\displaystyle{\left({\frac{{{U}{o}}}{{{m}}}}\right)}^{{\frac{{1}}{{2}}}}\)
if the potential energy function is given by
\(\displaystyle{U}{\left({r}\right)}={b}{r}^{{P}}-\frac{{3}}{{2}}\rbrace+{c}\)
where b and c are constants
which of the following is an edxpression of the force on theparticle?
1) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}\)
2) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}{b}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
3) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{3}\right\rbrace}{\left\lbrace{2}\right\rbrace}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}\)
4) \(\displaystyle{2}{b}{\left({r}^{{-\frac{{1}}{{2}}}}\right)}+{c}{r}\)
5) \(\displaystyle{\frac{{{3}{b}}}{{{2}}}}{\left\lbrace{2}{b}\right\rbrace}{\left\lbrace{5}\right\rbrace}{\left({r}^{{-\frac{{5}}{{2}}}}\right)}+{c}{r}\)
...