\(\displaystyle\sum{F}_{{x}}\) Tension=R=AE

\(\displaystyle{A}{C}{x}=-{900}{l}{b}{s}\)

\(\displaystyle{A}{D}{x}=-{12000}{\cos{{\left({30}\right)}}}=-{1039.23}{l}{b}{s}\)

\(\displaystyle{A}{E}{x}={R}{\cos{{\left({50}\right)}}}\)

\(\displaystyle\sum{F}_{{y}}\)

\(\displaystyle{A}{C}{y}={0}\)

\(\displaystyle{A}{D}{y}=-{600}{l}{b}{s}\)

\(\displaystyle{A}{E}{y}=-{R}{\sin{{\left({50}\right)}}}\)

\(\displaystyle{A}{C}{x}+{A}{D}{x}=-{1939.23}{l}{b}{s}\)

\(\displaystyle{A}{C}{y}+{A}{D}{y}=-{600}{l}{b}{s}\)

Just solve the following equations for R and P...

\(\displaystyle-{19.39}{.23}-{R}{\cos{{\left({50}\right)}}}=-{P}{\cos{{\left({65}\right)}}}\)

\(\displaystyle-{600}-{R}{\sin{{\left({50}\right)}}}=-{P}{\sin{{\left({65}\right)}}}\)

You should get...

\(\displaystyle{R}={1659.45}{l}{b}{s}\)

\(\displaystyle{P}={2064.65}{l}{b}{s}\)

\(\displaystyle{A}{C}{x}=-{900}{l}{b}{s}\)

\(\displaystyle{A}{D}{x}=-{12000}{\cos{{\left({30}\right)}}}=-{1039.23}{l}{b}{s}\)

\(\displaystyle{A}{E}{x}={R}{\cos{{\left({50}\right)}}}\)

\(\displaystyle\sum{F}_{{y}}\)

\(\displaystyle{A}{C}{y}={0}\)

\(\displaystyle{A}{D}{y}=-{600}{l}{b}{s}\)

\(\displaystyle{A}{E}{y}=-{R}{\sin{{\left({50}\right)}}}\)

\(\displaystyle{A}{C}{x}+{A}{D}{x}=-{1939.23}{l}{b}{s}\)

\(\displaystyle{A}{C}{y}+{A}{D}{y}=-{600}{l}{b}{s}\)

Just solve the following equations for R and P...

\(\displaystyle-{19.39}{.23}-{R}{\cos{{\left({50}\right)}}}=-{P}{\cos{{\left({65}\right)}}}\)

\(\displaystyle-{600}-{R}{\sin{{\left({50}\right)}}}=-{P}{\sin{{\left({65}\right)}}}\)

You should get...

\(\displaystyle{R}={1659.45}{l}{b}{s}\)

\(\displaystyle{P}={2064.65}{l}{b}{s}\)