If I have a differential equation where A is a constant square matrix that is not diagonalizable(although it is surely possible to calculate the eigenvalues) and no initial condition is given. And now I am interested in the fundamental matrix. Is there a general method to determine this matrix? I do not want to use the exponential function and the Jordan normal form, as this is quite exhausting. Maybe there is also an ansatz possible as it is for the special case, where this differential equation is equivalent to an n-th order ode. I saw a method where they calculated the eigenvalues of the matrix and depending on the multiplicity n of this eigenvalue they used an exponential term(with the eigenvalue) and in each component an n-th order polynomial as a possible ansatz. Though they only did this, when they were interested in a initial value problem, so with an initial condition and not for a general solution.
I was asked to deliver an example: so If somebody can construct a fundamental matrix for this system, than this should be sufficient