Katie made an error in the last calculation: the torqueis again positive FL N-m.

This shows that the torque due to a couple is independent ofthe axis of rotation.

This shows that the torque due to a couple is independent ofthe axis of rotation.

Question

asked 2021-02-25

We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.

b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.

c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.

d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.

Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.

asked 2021-05-09

The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus

\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)

where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.

Part A:

Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.

Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.

Part B:

A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).

Assume the following:

The top speed is limited by air drag.

The magnitude of the force of air drag at these speeds is proportional to the square of the speed.

By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?

Express the percent increase in top speed numerically to two significant figures.

\(\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}\)

where A is the cross-sectional area of the vehicle and \(\displaystyle{C}_{{d}}\) is called the coefficient of drag.

Part A:

Consider a vehicle moving with constant velocity \(\displaystyle\vec{{{v}}}\). Find the power dissipated by form drag.

Express your answer in terms of \(\displaystyle{C}_{{d}},{A},\) and speed v.

Part B:

A certain car has an engine that provides a maximum power \(\displaystyle{P}_{{0}}\). Suppose that the maximum speed of thee car, \(\displaystyle{v}_{{0}}\), is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power \(\displaystyle{P}_{{1}}\) is 10 percent greater than the original power (\(\displaystyle{P}_{{1}}={110}\%{P}_{{0}}\)).

Assume the following:

The top speed is limited by air drag.

The magnitude of the force of air drag at these speeds is proportional to the square of the speed.

By what percentage, \(\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}\), is the top speed of the car increased?

Express the percent increase in top speed numerically to two significant figures.

asked 2021-03-17

The person weighs 170 lb. Each crutch makes an angle of 22.0 with the vertical. Half of the person's weight is supported by the cruches, the other half by the vertical forces exerted by the roundon his feet. Assuming that he is at rest and that the force exerted by the ground on the crutches acts along the crutches,determine

a) the smallest possible coefficient of friction between crutches and ground and

b) the magnitude of the compression force supported by each crutch.

a) the smallest possible coefficient of friction between crutches and ground and

b) the magnitude of the compression force supported by each crutch.

asked 2021-03-26

A pair of slits, separated by 0.150 mm, is illuminated by light having a wavelength of ? = 561 nm. An interference pattern is observed on a screen 122 cm from the slits. Consider a point on the screen located at y = 2.00 cm from the central maximum of this pattern.

(a) What is the path difference ? for the two slits at the location y?

(b) Express this path difference in terms of the wavelength.

(a) What is the path difference ? for the two slits at the location y?

(b) Express this path difference in terms of the wavelength.

asked 2021-05-16

Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.

A. Let y=f(x) be the equation of C. Find f(x).

B. Find the slope at P of the tangent to C.

C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?

D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.

E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.

Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.

A. Let y=f(x) be the equation of C. Find f(x).

B. Find the slope at P of the tangent to C.

C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?

D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.

E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.

Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.

asked 2021-04-21

The arm weighs 44.0 N. The force of gravity acting on the arm acts through point A. Determine the magnitudes of the tension force t in the deltoid muscle and the force s of the shoulder on the humerus (upper-arm bone) to hold the arm in the position shown.

t=N

s=N

t=N

s=N

asked 2021-03-24

The figure shows 3 crates being pushed over a concrete floor by a horizontal force f of magnitude 440N. The masses of the cratesare \(\displaystyle{m}_{{1}}={30}\) kg, \(\displaystyle{m}_{{2}}={10}\) kg, and \(\displaystyle{m}_{{3}}={20}\) kg.The coefficient of kineticfriction between the floor and each of the crates is 0.7. a) what is the magnitude \(\displaystyle{F}_{{{32}}}\) of the force on crate 3 from crate 2? b) If the crates then slide onto a polished floor, where the coefficientof kinetic friction is less than 0.700, is magnitude PSKF_{32}ZSL more than,less than, or the same as it was when the coeffient was 0.700?

asked 2021-02-14

Dayton Power and Light, Inc., has a power plant on the Miami Riverwhere the river is 800 ft wide. To lay a new cable from the plantto a location in the city 2 mi downstream on the opposite sidecosts $180 per foot across the river and $100 per foot along theland.

(a) Suppose that the cable goes from the plant to a point Q on theopposite side that is x ft from the point P directly opposite theplant. Write a function C(x) that gives the cost of laying thecable in terms of the distance x.

(b) Generate a table of values to determin if the least expensivelocation for point Q is less than 2000 ft or greater than 2000 ftfrom point P.

(a) Suppose that the cable goes from the plant to a point Q on theopposite side that is x ft from the point P directly opposite theplant. Write a function C(x) that gives the cost of laying thecable in terms of the distance x.

(b) Generate a table of values to determin if the least expensivelocation for point Q is less than 2000 ft or greater than 2000 ftfrom point P.

asked 2021-04-15

A car initially traveling eastward turns north by traveling in a circular path at uniform speed as in the figure below. The length of the arc ABC is 235 m, and the car completes the turn in 33.0 s. (Enter only the answers in the input boxes separately given.)

(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \(\displaystyle\hat{{{i}}}\) and \(\displaystyle\hat{{{j}}}\).

1. (Enter in box 1) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+{\left({E}{n}{t}{e}{r}\in{b}\otimes{2}\right)}{P}{S}{K}\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)

(b) Determine the car's average speed.

3. ( Enter in box 3) m/s

(c) Determine its average acceleration during the 33.0-s interval.

4. ( Enter in box 4) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+\)

5. ( Enter in box 5) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)

(a) What is the acceleration when the car is at B located at an angle of 35.0°? Express your answer in terms of the unit vectors \(\displaystyle\hat{{{i}}}\) and \(\displaystyle\hat{{{j}}}\).

1. (Enter in box 1) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+{\left({E}{n}{t}{e}{r}\in{b}\otimes{2}\right)}{P}{S}{K}\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)

(b) Determine the car's average speed.

3. ( Enter in box 3) m/s

(c) Determine its average acceleration during the 33.0-s interval.

4. ( Enter in box 4) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{i}}}+\)

5. ( Enter in box 5) \(\displaystyle\frac{{m}}{{s}^{{2}}}\hat{{{j}}}\)

asked 2021-05-04

Assume that a 1.00-kg ball is thrown solely by the action of the forearm, which rotates about the elbow joint under the action of the triceps muscle. The ball is accelerated uniformly from rest to 10.0 m/s in 0.350 s, at which point it is released. Calculate (a) the angular acceleration of the arm, and (b) the force required of the triceps muscle. Assume that the forearm has a mass of 3.70 kg and rotates like a uniform rod about an axis at its end.