a.

apply the formula for Torque \(\displaystyle{T}={I}\alpha\)

where alpha is Angular accleration

I is moment of inertia \(\displaystyle{\frac{{={M}{L}^{{2}}}}{{{12}}}}\)

\(\displaystyle\alpha={\frac{{{T}}}{{{I}}}}\)

\(\displaystyle\alpha={\frac{{{1950}}}{{{117}\cdot{2.08}\cdot{\frac{{{2.08}}}{{{12}}}}}}}\)

\(\displaystyle\alpha={46.22}\ {r}{a}\frac{{d}}{{s}^{{2}}}\)

b. apply the relation between angular speed and ang accleration

As \(\displaystyle{W}^{{2}}={2}\alpha\theta\)

\(\displaystyle{W}^{{2}}={2}\cdot{46.22}\cdot{5}\cdot{2}\cdot{3.14}\)

\(\displaystyle{W}^{{2}}={2902.616}\)

\(\displaystyle{W}={53.87}\frac{{rad}}{{\sec{}}}\)

c.apply the formula for Work Done W = 0.5 I \(\displaystyle{W}^{{2}}\)

\(\displaystyle{W}={0.5}\cdot{117}\cdot{2.08}\cdot{2.08}\cdot{53.87}\cdot{\frac{{{53.87}}}{{{12}}}}\)

\(\displaystyle{W}={6.12}\cdot{10}^{{4}}\) Joules

Power \(\displaystyle{P}={T}{W}\)

so

\(\displaystyle{P}={1959}\cdot{53.87}\)

\(\displaystyle{P}={1.05}\cdot{10}^{{5}}\) watts

Pin=W/t=1.05 e 5 Watts