Solve the equation on the interval [0,2pi] sin{{left({x}+frac{pi}{{4}}right)}}+ sin{{left({x}-frac{pi}{{4}}right)}}={1}

Solve the equation on the interval [0,2pi] \(\sin{{\left({x}+\frac{\pi}{{4}}\right)}}+ \sin{{\left({x}-\frac{\pi}{{4}}\right)}}={1}\)

Answers (1)

Use the sum and difference identities for sine:
\(\sin{{\left({A}\pm{B}\right)}}= \sin{{A}} \cos{{B}}\pm \cos{{A}} \sin{{B}}\)
\({\left( \sin{{x}}\frac \cos{\pi}{{4}}+ \cos{{x}}\frac \sin{\pi}{{4}}\right)}+{\left( \sin{{x}}\frac \cos{\pi}{{4}}+ \cos{{x}}\frac \sin{\pi}{{4}}\right)}=1\)
\({2}\sin{{x}}\frac \cos{\pi}{{4}}=1\)
\(\sqrt{{2}} \sin{{x}}=1\)
Sine is positive on QI and QII.
The reference angle is \(\frac{\pi}{{4}} ,\ \text{since} \ \frac \sin{\pi}{{4}}=\frac{\sqrt{{2}}}{{2}}\)
The QI solution is:
The QII solution is:

Relevant Questions

asked 2020-10-31
Solve the equation \(\frac{{{1}+{{\tan}^{2}{A}}}}{{{1}+{{\cot}^{2}{A}}}}={\left(\frac{{{1}- \tan{{A}}}}{{{1}- \cot{{A}}}}\right)}^{2}={{\tan}^{2}{A}}\)
asked 2020-11-12
Solve the equation \(\frac{{{3}{a}{{\sin}^{2}{\left(\theta\right)}} \cos{{\left(\theta\right)}}}}{{{3}{a}{{\cos}^{2}{\left(\theta\right)}} \sin{{\left(\theta\right)}}}}= \tan{{\left(\theta\right)}}\)
asked 2020-10-28
Solve the equation \(\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}\)
asked 2021-01-19
Find an equation of the tangent line to the curve at the given point.
asked 2021-01-31
Linear equations of first order.
Solve the initial-value problem on the specified interval \({y}'+{y} \tan{{x}}= \sin{{2}}{x}{o}{n}{\left(-\frac{1}{{2}}\pi,\frac{1}{{2}}\pi\right)}\ \text{with}\ {y}={2}\ \text{when}\ {x}={0}\).
asked 2021-02-19
Solve the equation \frac{\cot(x)-\tan(x)}{(\cot^{2}(x)-\tan^{2}(x)}=\sin x\cos x
asked 2020-11-23
Solve the equation \(\frac{1}{\csc \theta-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}\)
asked 2021-01-19
Interval \([0,2pi)\)
\(2 cos^2 x - cos x = 0\)?
asked 2020-10-26
Solve the equation
\(\displaystyle{\sin{{\left({x}°-{20}°\right)}}}={\cos{{42}}}°\) for x, where 0 < x < 90
asked 2021-01-28
Given \(f(x)\ \cos(2x)\) and the interval
\([0,\ 3\ \frac{\pi}{4}]\)
approximate the area bounded by the graph of f(x) and the axis on the interval using a left, right, and mid point Riemann sum with \(n = 3\)