Solve the system of equations (Use matrices.): x-2y+z = 16, 2x-y-z = 14, 3x+5y-4z =-10

Question
Matrices
asked 2021-02-02
Solve the system of equations (Use matrices.):
x-2y+z = 16,
2x-y-z = 14,
3x+5y-4z =-10

Answers (1)

2021-02-03
Step 1
Given,
x-2y+z = 16,
2x-y-z = 14,
3x+5y-4z = -10
Step 2
Consider the Augmented matrix is of the form AX=B
\(\begin{bmatrix}1 & -2&1 \\2 & -1&-1\\3&5&-4 \end{bmatrix}\begin{bmatrix}x \\y\\z \end{bmatrix}=\begin{bmatrix}16 \\14\\-10 \end{bmatrix}\)
Here,
\(A=\begin{bmatrix}1 & -2&1 \\2 & -1&-1\\3&5&-4 \end{bmatrix},X=\begin{bmatrix}x \\y\\z \end{bmatrix}\text{ and }B=\begin{bmatrix}16 \\14\\-10 \end{bmatrix}\)
Use Gauss Elimination method,
Consider,
\([A/B]=\begin{bmatrix}1 & -2&1&16 \\2 & -1&-1&14\\3&5&-4&-10 \end{bmatrix}\)
\(R_2 \rightarrow R_2-2R_1\)
\(\sim \begin{bmatrix}1 & -2&1&16 \\0 & 3&-3&-18\\3&5&-4&-10 \end{bmatrix}\)
\(R_3 \rightarrow R_3-3R_1\)
\(\sim \begin{bmatrix}1 & -2&1&16 \\0 & 3&-3&-18\\0&11&-7&-58 \end{bmatrix}\)
\(R_2 \rightarrow \frac{1}{3}R_2\)
\(\sim \begin{bmatrix}1 & -2&1&16 \\0 & 1&-1&-6\\0&11&-7&-58 \end{bmatrix}\)
\(R_3 \rightarrow R_3-11R_2\)
\(\sim \begin{bmatrix}1 & -2&1&16 \\0 & 1&-1&-6\\0&0&4&8 \end{bmatrix}\)
\(R_3 \rightarrow \frac{1}{4}R_3\)
\(\sim \begin{bmatrix}1 & -2&1&16 \\0 & 1&-1&-6\\0&0&1&2 \end{bmatrix}\)
Step 3
The above matrix is in the row echelon form
By back substitution we get,
\(z=2 \dots(i)\)
\(y-z=−6 \dots (ii)\)
\(x-2y+z=16 \dots (iii)\)
Substitute the value of z in (ii) we get,
y-2=-6
y=-4
Substitute the value of y and z in (iii) we get,
x-2(-4)+2=16
x+8+2=16
x+10=16
x=16-10
x=6
Therefore the solution set is (x,y,z)=(6,-4,2)
0

Relevant Questions

asked 2021-02-05
Solve the systems of equations using matrices.
4x+5y=8
3x-4y=3
Leave answer in fraction form.
4x+y+z=3
-x+y=-11+2z
2y+2z=-1-x
asked 2020-11-23
Solve the system of equations using matrices. Use the Gaussian elimination method with​ back-substitution.
x+4y=0 x+5y+z=1 5x-y-z=79
asked 2021-02-13
Solve the system of linear equations using matrices.
x+y+z=3
2x+3y+2z=7
3x-4y+z=4
asked 2021-01-08
Solve the system of equations using matrices.Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
\(\begin{cases}x+y-z=-2\\2x-y+z=5\\-x+2y+2z=1\end{cases}\)
asked 2020-12-25
For the given systems of linear equations, determine the values of \(b_1, b_2, \text{ and } b_3\) necessary for the system to be consistent. (Using matrices)
\(x-y+3z=b_1\)
\(3x-3y+9z=b_2\)
\(-2x+2y-6z=b_3\)
asked 2021-02-08
Solve the system of given equations using matrices. Use Gaussian elimination with back-substitution or Gauss-Jordan elimination.
\(\begin{cases}x+3y=0\\x+y+z=1\\3x-y-z=11\end{cases}\)
asked 2021-01-25
Solve the system of linear equations using matrices.
3x-2y-4=0
2y=12-x
asked 2021-02-19
For the given a system of linear equations
4x+y-5z=8
-2x+3y+z=12
3x-y+4z=5
Use matrix inversion to solve simultaneous equations.
asked 2021-01-10
Use a system of linear equations to find the quadratic function
\(f(x) = ax^22+bx+c\)
that satisfies the given conditions. Solve the system using matrices.
f(-2) = 6, f(1) = -3, f(2) = -14
f(x) =?
asked 2021-03-12
Let a linear sytem of equations Ax=b where
\(A=\begin{pmatrix}4 & 2&-2 \\2 & 2&-3\\-2&-3&14 \end{pmatrix} , b=\begin{pmatrix}10 , 5 , 4 \end{pmatrix}^T\)
in case we solve this equation system by using Dolittle LU factorization method , find Z and X matrices
...