Solve the equation frac{sin^{2}theta/}{cos theta}= sec theta-cos theta

Trigonometric equation and identitie
asked 2021-02-25
Solve the equation \(\frac{\sin^{2}\theta/}{cos \theta}= \sec \theta-\cos \theta\)

Answers (1)

Work with the left side. Use the Pythagorean identity:
\(\frac{\sin^{2}\theta}{cos \theta}=\frac{1-\cos^{2}\theta}{cos \theta}\)
Separate as:
\(\frac{\sin^{2}\theta}{cos \theta}=1/\cos \theta-\frac{\cos^{2}\theta}{cos \theta}\)
\(\frac{\sin^{2}\theta}{\cos \theta}=\frac{1}{\cos \theta}-\cos \theta\)
Use the reciptiocal identity: \(\sec \theta=\frac{1}{\cos \theta}\)
\(\frac{\sin^{2}\theta}{\cos \theta}= \sec \theta-\cos \theta\)
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-06-05
Verify that the equation is an identity. (Hint: \(\cos2x=\cos(x+x)\).)
asked 2021-06-13
Prove the identity
\(\frac{1}{2\csc 2x}=\cos^2 x \tan x\)
Choose the sequence of steps below that verifies the identity
A) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x =\frac{\sin 2x}{2}=\frac{1}{2\csc 2x}\)
B) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=\frac{\sin 2x}{2}=\frac{1}{2 \csc 2x}\)
C) \(\cos^2 x \tan x=\cos^2 x \frac{\cos x}{\sin x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
D) \(\cos^2 x \tan x =\cos^2 x \frac{\sin x}{\cos x}=\cos x \sin x=2 \sin 2x=\frac{1}{2 \csc 2x}\)
asked 2020-11-12
If \(\displaystyle{\cot{{\left(\theta\right)}}}={7}\), what is \(\displaystyle{\sin{{\left(\theta\right)}}},{\cos{{\left(\theta\right)}}},{\sec{{\left(\theta\right)}}}\) between 0 and \(\displaystyle{2}\pi\)?
asked 2020-11-23
Solve the equation \(\frac{1}{\csc \theta-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}\)
asked 2020-11-12
Solve the equation \(\frac{(2\sin \theta \sin 2\theta)}{\cos \theta+\cos 3\theta}=\tan (\theta) \tan(2\theta)\)
asked 2020-10-28
Solve the equation \(\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}\)
asked 2020-11-11
Solve the equation \(3+\sin \theta=\frac{6-\sqrt{2}}{2}\)
asked 2021-01-07
Prove that \(\displaystyle{\sec{{\left(\theta\right)}}}+{\csc{{\left(\theta\right)}}}={\left({\sin{{\left(\theta\right)}}}+{\cos{{\left(\theta\right)}}}\right)}{\left({\tan{{\left(\theta\right)}}}+{\cot{{\left(\theta\right)}}}\right)}\)
asked 2021-05-31
Understand sine and cosine values on the unit circle Question
If the terminal side of angle tt goes through the point \(\displaystyle{\left(-{\left(\frac{{5}}{{13}}\right)},-{\left(\frac{{12}}{{13}}\right)}\right.}\) on the unit circle, then what is cos(t)?
Provide your answer below: \(\displaystyle{\cos{{\left({t}\right)}}}=□\)
asked 2021-06-05