Solve the equation sec x - sec x sin^{2}x = cos x

Question
Solve the equation \sec x - \sec x sin^{2}x = \cos x

2020-11-08
Work with a left side.
Factor out $$\\sec x$$:
$$\sec x-\sec x\sin^{2}x=\sec x(1-\sin^{2}x)$$
Use the Pythagorean identity: $$\sin^{2}x+\cos^{2}x=1$$
$$\sec x-\sec x\sin^{2}x=\sec x(\cos^{2}x)$$
Use the reciprocal identity: $$\sec x=1/\cos x$$
$$\sec x-\sec x\sin^{2}x=1/\cos x(\cos^{2}x)$$
$$\sec x-\sec x\sin^{2}x=\cos x$$

Relevant Questions

Solve the equation $$\frac{\sin^{2}\theta/}{cos \theta}= \sec \theta-\cos \theta$$
Solve the equation $$\frac{1-\sin x}{1+\sin x}=(\sec x-\tan x)^{2}$$
Solve the equation $$\tan x \sec x \sin x= \tan^{2}x$$
Solve the equation $$\frac{{{3}{a}{{\sin}^{2}{\left(\theta\right)}} \cos{{\left(\theta\right)}}}}{{{3}{a}{{\cos}^{2}{\left(\theta\right)}} \sin{{\left(\theta\right)}}}}= \tan{{\left(\theta\right)}}$$
$$\displaystyle{\sin{{\left({x}°-{20}°\right)}}}={\cos{{42}}}°$$ for x, where 0 < x < 90
Solve the equation $$\csc x - \sin x = \cot x \cos x$$
If $$\displaystyle{\cot{{\left(\theta\right)}}}={7}$$, what is $$\displaystyle{\sin{{\left(\theta\right)}}},{\cos{{\left(\theta\right)}}},{\sec{{\left(\theta\right)}}}$$ between 0 and $$\displaystyle{2}\pi$$?
Solve the equation $$\sin \theta \cot \theta = \cos \theta$$
Solve the equation $$\frac{1}{\csc \theta-\cos \theta}=\frac{1+\cos \theta}{\sin \theta}$$
Solve the equation $$\frac{(2\sin \theta \sin 2\theta)}{\cos \theta+\cos 3\theta}=\tan (\theta) \tan(2\theta)$$