# Solve cos 30° cos 35° - sin 30° sin 35°

Question
Solve \cos 30° \cos 35° - \sin 30° \sin 35°

2020-10-19
Use the sum identity for cosine:
$$\cos(A+B)=\cosA\cosB-\sinA\sinB=\cos(30°+35°)$$
$$=cos65°$$

### Relevant Questions

Solve $$\frac{\csc x(sin^{2}x+cos^{2}x\tan x)}{\sin x+\cos x}$$
Solve $$\frac{(\sin \theta+\cos \theta)}{\cos \theta}+\frac{(\sin \theta-\cos \theta)}{\cos \theta}$$
Solve $$(\sin x + \cos x)(\sin x + \cos x)$$
Multiply and simplify: $$\frac{(\sin \theta+\cos \theta)(\sin \theta+\cos \theta)-1}{\sin \theta \cos \theta}$$
Solve $$\frac{(1-\sin^{2}x)}{(csc^{2}x-1)}$$
What is the solution of $$\cos2x - \cos x = 0\ \text{in the interval}\ [0, 2\pi )$$ ?
$$\displaystyle\int{\frac{{{{\cos}^{{5}}{\left({3}{z}\right)}}{\left.{d}{z}\right.}}}{{{{\sin}^{{2}}{\left({3}{z}\right)}}}}}$$
$$\displaystyle{\sec{{\left({210}\right)}}}\times{\cot{{\left({300}\right)}}}+{\sin{{\left({225}\right)}}}$$
$$\displaystyle{\tan{{\left({60}\right)}}}\times{3}{\sin{{\left({90}\right)}}}-{\sin{{\left({315}\right)}}}$$