# Let A=\begin{bmatrix}a&b\\c&d\end{bmatrix} and 'k' be the scalar. Find the formula that relates 'detKA' to 'K' and 'detA''

Question
Vectors and spaces

Let $$\displaystyle A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$$ and 'k' be the scalar. Find the formula that relates 'detKA' to 'K' and 'detA''

2021-03-13

Given $$\displaystyle A=\begin{bmatrix}a&b\\c&d\end{bmatrix}$$
So $$\displaystyle kA=\begin{bmatrix}ka&kb\\kc&kd\end{bmatrix}$$
now $$\displaystyle det(kA)=\begin{vmatrix}ka&kb\\kc&kd\end{vmatrix}=k^2\begin{vmatrix}a & b \\c & d \end{vmatrix}$$
$$\displaystyle{\det{{\left({k}{A}\right)}}}={k}^{{2}}\ {\det{{\left({A}\right)}}}$$

### Relevant Questions

Let $$\displaystyle{B}={\left\lbrace{v}{1},{v}{2},\ldots,{v}{m}\right\rbrace}$$ be a basis for $$R^{m}$$. Suppose kvm is a linear combination of $$v1, v2, \cdots, vm-1$$ for some scalar k. What can be said about the possible value(s) of k?

Let u,$$v_1$$ and $$v_2$$ be vectors in $$R^3$$, and let $$c_1$$ and $$c_2$$ be scalars. If u is orthogonal to both $$v_1$$ and $$v_2$$, prove that u is orthogonal to the vector $$c_1v_1+c_2v_2$$.

Let U,V be subspaces of Rn. Suppose that $$U\bot V.$$ Prove that $$\{u,v\}$$ is linearly independent for any nonzero vectors $$u\in U,\ v\in V.$$

Consider $$\displaystyle{V}={s}{p}{a}{n}{\left\lbrace{\cos{{\left({x}\right)}}},{\sin{{\left({x}\right)}}}\right\rbrace}$$ a subspace of the vector space of continuous functions and a linear transformation $$\displaystyle{T}:{V}\rightarrow{V}$$ where $$\displaystyle{T}{\left({f}\right)}={f{{\left({0}\right)}}}\times{\cos{{\left({x}\right)}}}−{f{{\left(π{2}\right)}}}\times{\sin{{\left({x}\right)}}}.$$ Find the matrix of T with respect to the basis $$\displaystyle{\left\lbrace{\cos{{\left({x}\right)}}}+{\sin{{\left({x}\right)}}},{\cos{{\left({x}\right)}}}−{\sin{{\left({x}\right)}}}\right\rbrace}$$ and determine if T is an isomorphism.

m Find m $$Y=(6x+44)$$
$$Z=(-10x+65)$$

Let $$u=\begin{bmatrix}2 \\ 5 \\ -1 \end{bmatrix} , v=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix} \text{ and } w=\begin{bmatrix}-4 \\ 17 \\ -13 \end{bmatrix}$$ It can be shown that $$4u-3v-w=0$$. Use this fact (and no row operations) to find a solution to the system $$4u-3v-w=0$$ , where
$$A=\begin{bmatrix}2 & -4 \\5 & 17\\-1&-13 \end{bmatrix} , x=\begin{bmatrix}x_1 \\ x_2 \end{bmatrix} , b=\begin{bmatrix}4 \\ 1 \\ 3 \end{bmatrix}$$

Let M be the vector space of $$2 \times 2$$ real-valued matrices.
$$M=\begin{bmatrix}a & b \\c & d \end{bmatrix}$$
and define $$M^{\#}=\begin{bmatrix}d & b \\c & a \end{bmatrix}$$ Characterize the matrices M such that $$M^{\#}=M^{-1}$$

Use the factorization A=PDP^{-1} to compute A^{k}. where k represents an arbitrary integer.
$$\begin{bmatrix}a & 11(b-a) \\0 & b \end{bmatrix}=\begin{bmatrix}1 & 11 \\0 & 1 \end{bmatrix}\begin{bmatrix}a & 0 \\0 & b \end{bmatrix}\begin{bmatrix}1 & -11 \\0 & 1 \end{bmatrix}$$
$$A^{k}=$$?
$$f_{X}(t)=f_{Y}(t)=\begin{cases}\frac{2}{t^{2}},\ t>2\\0,\ otherwise \end{cases}$$