Since \(\sin \theta = \frac{opp}{hyp}\) then we let opp = 7 and hyp = 25.

We solve for adj (adjacent side) using Pythagorean Theorem:

\(opp^{2}+adj^{2}= hyp^{2}\)

\(7^{2}+adj=25^{2}\)

\(49+adj^{2}=625\)

\(adj^{2}=576\)

\(adj=24\)

Since is in quadrant I, then tan theta is positive:

\(\tan \theta=\frac{opp}{adj}= \frac{7}{24}\)